能体现教师教学思路和创新点的书面计划,往往是经过多次修改的优质教案,,通过对教案的反思,教师能够发现自身的不足,进而进行改进,以下是69模板网小编精心为您推荐的五年级的数学教案推荐6篇,供大家参考。
五年级的数学教案篇1
教学内容:分数与除法
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的`互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6 = 6 4÷5=0.8 80÷5=16
3÷7= 5÷10=0.5 4÷9=
然后引导学生归纳分类:
36÷6 = 6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个47 40÷47
饮料39瓶47 39÷47
花生8千克47 8÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学a和b共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= (b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上:b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13= =()÷()
()÷9= ()÷26=
2、用分数表示下面各式的商。
3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=
7÷13= 74÷14= 77÷13= 78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!
板书设计:
分数与除法
a÷b= (b≠0)
3÷4=(张)
答:每人分得张饼。
五年级的数学教案篇2
教学目标:
1、知识与技能:理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。
2、过程与方法:结合具体事物,经历自主探索小数乘小数的的计算方法的过程。
3、情感态度与价值观:积极参加数学活动,培养迁移类推能力,获得借助计算器和运用自己的知识解决问题的成功体验。
教学重点:
掌握小数乘小数的方法,会熟练的进行笔算。掌握小数末尾的0的处理方法。
教学难点
因数的小数位数与积的小数位数的关系。
教学准备:多媒体课件
教学过程的设计
一.情境导入
1、师:同学们,如今我们的生活水平有了很大的提高,住房条件也有了很大的改善,很多同学都住进了新房,聪聪家最近也换了套新房,现在老师就带你们去看看。瞧!这就是聪聪家的客厅。(课件出示) 通过观察平面图,你想知道什么?能提出什么数学问题?
(设计意图:直接导入,课件展示聪聪家的客厅平面图,容易激发学生学习的兴趣,进而诱发学生主动解决问题的内驱力。)
2、 生提问题。
3、 师:同学们提出了很多有价值的问题。如果要求的聪聪家客厅的面积有多大,该怎样列式呢?(板书:4.8×3.6)观察算式的.两个因数,你发现了什么?
生:算式的两个因数都是小数。
生:两个因数都是一位小数。
4、师:同学们观察的很仔细,今天我们就来探讨“小数乘小数的计算方法”。 板书课题:小数乘小数
(设计意图:从计算房间的面积这一实际问题引入,容易激发学生的学习兴趣。小数乘小数的重点是小数点的书写位置,让学生观察题中因数的特点,主要目的是为了确定积中小数的位数打基础。)
二、探究新知
1、推导笔算方法
①、提出(转载于:小数乘小数教学设计)估算要求,
师:计算之前我们先估算一下,聪聪家的客厅面积大约是多少平方米?让学生说一说自己是怎样想的?
生:把3.6看作4,把4.5看作5因此:3.6×4.8≈20
也就是说聪聪家客厅的面积不到20平方米。
(设计意图:培养学生估算的意识,使学生养成“先估算,在计算”的习惯,提高计算的正确率,未确定竖式计算结果做铺垫。)
②、提出竖式计算的要求,讨论两个因数都是一位小数怎么办?
教师板书:
4.8
× 3.6
1、回忆小数乘整数的计算方法.
2、提问: 两个因数都是一位小数怎么计算?可以转换成整数乘法来计算吗?
3、让学生说出算理,独立试一试,指名汇报答案。学生上台板演。
4、确定积的小数点的位置,并说明理由。
(设计意图:“问题讨论”是学生把已有的知识迁移到新知识的过程,是理解算理的过程,是发展学生教学思维的过程。)
③、分析算理。
我们一起在原式上做一做。(边说边板书)
思考:1. 乘数中的两个因数是如何转化成整数计算的?
2. 用整数相乘的方法算出48×36的积以后怎么办?
3. 要得到原来的积,应该怎么办?
4、小数点应该点到哪里呢?
教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1728除以100,从积的右边起数出两位点上小数点。所以3.6×4.8的积是两位小数。
④(教师出示课件),显示算理的全过程。指名学生结合竖式,再次说出小数乘小数的计算方法,
(设计意图:让学生经历用竖式计算方法的形成过程,掌握计算方法。)
2、沙发的占地面积,
①、提出问题:刚才我们求出了聪聪家客厅的面积,聪聪家的客厅里还有一个漂亮的沙发,(出示课件)生观察图,说出了解到的信息和要解决的问题。
②师:求沙发的占地面积是多少平方米,该怎样列式呢?
学生可能说出不同的算式,教师肯定并板书。
0.85×1.8
师:同学们看一看这个算式的两个因数,你发现了什么?
生:这个算式中的两个因数都是小数。
生:两个因数一个是一位小数,一个是两位小数。
(设计意图:了解题中的数据信息和问题,列出算式,了解因数的特点,为竖式计算做准备)
③师:这样的两个小数相乘,用竖式计算怎样算呢?(教师强调小数乘法列竖式是不要把小数点对齐,要把因数的末尾数对齐。)
教师板书竖式:
生:学生试算,指名学生到黑板上板演,并让板演的同学说一说自己计算的方法。
学生完成板书:
师:用整数乘法的方法计算出积以后怎么办?
生:回答,师在竖式中点上小数点。
师:告诉学生在横式中写得数时,根据小数的基本性质,小数末尾的0可以不写。
完成横式:
0.85×1.8=1.53(平方米)
④师:(出示课件)再次显示小数乘法的计算方法与过程。
(设计意图:让学生自己尝试计算,既检验学生掌握计算方法的程度,用便于解决计算中数学问题,提高学习效率。)
⑤师:用竖式算的对不对呢?请同学们用计算器检验一下。
学生计算交流。
(设计意图:通过自己检验计算结果,确信计算方法的正确性)
三、归纳总结
让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。师生共同总结归纳小数乘小数的计算方法。
出示问题:观察比较,总结算法。
1、例题中的两个因数分别是几位小数?积是几位小数?
2、通过比较,你发现上面两题中两个因数与积的小数位数有什么关系?
3、你知道计算小数乘小数时,要先干什么,后干什么吗?小数点的位置是 如何确定的?
师总结算法:小数与小数相乘,先按照整数乘法的算法求出积,再看因数中 一共有几位小数,就从积的右边数出几位,点上小数点。(课件播放)
(设计意图:在观察、讨论的过程中,发展学生的数学思维,经历有个性的经验提升为数学方法的过程。)
师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,根据这种关系,我们不计算,就能判断积的小数位数。
四、尝试应用
1、聪聪家的客厅里还有一个漂亮的茶几,(出示课件)生观察图,说出了解到的信息和要解决的问题。
师:求茶几的占地面积是多少平方米,该怎样列式呢?
学生说,教师板书:0.45×0.9=
师:估计一下,0.45×0.9的积有几位小数?为什么?
生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。 师:请同学们试着用竖式计算。
学生自主笔算,教师巡视,个别指导。请一名好学生板演。请板演的同学说
一说确定小数点时是怎样想的。
生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。
(设计意图:让学生用已有的知识尝试解决问题,先估计积有几位小数,为自主计算打基础。让好学生板演,减少教师板书的时间,提高学习效率。)
2、师:说的很好,下面我来考考你们。
出示“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。
师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?
生:看两个因数一共有几位小数。
(设计意图:让学生在练习中熟练应用并巩固因数中小数位数与积的小数位数的关系。)
五、全课小结:通过今天这节课的学习,你有什么收获?
五年级的数学教案篇3
教学内容:冀教版《数学》五年级上册第10、11页。
教学目标:
1、在动手操作的活动中,经历探索莫比乌斯圈神奇特征的过程。
2、学会制作简单的莫比乌斯圈,了解莫比乌斯圈的特征。
3、感受莫比乌斯圈的神奇,体会数学活动的趣味性和探索性。
教学准备:三根长30厘米、宽3厘米的白纸条,彩笔,剪刀,胶水。
教学方案:
教学环节
设计意图
教学预设
一、创设情境
1.学生阅读书中的文字,初步了解莫比乌斯圈。
2.拿出一张纸条让学生估计它的长和宽。
二、探索活动1
1.师生一起动手制作莫比乌斯圈。
教师一边口述制作莫比乌斯圈的方法一边演示制作,然后让每个人制作一个。
2.交流、展示学生作品。
3.提出涂色要求,学生涂色。鼓励学生合作完成。
4.观察、交流学生涂色的结果,让学生说一说发现了什么?
三、探索活动Ⅱ
1.让学生在另一张纸条的正中画好一条线,再粘成一个莫比乌斯圈。通过沿莫比乌斯圈一面涂色却使纸圈两面都有了颜色的事实,使学生初步感受莫比乌斯圈的神奇。
2.提出:如果用剪刀沿中线把莫比乌斯圈剪开,结果会怎样?的问题,让学生先大胆猜测,再动手操作。
3.交流沿中线剪开后的结果。
4.提出书中(2)的操作要求,让学生想象剪开后的结果。
5.鼓励学生按要求实际操作。
6.交流学生沿画线剪开后的结果。使学生发现把一个三等分的莫比乌斯圈沿等分线剪开,变成了一大一小两个套在一起的纸圈。
四、课外延伸
教师进行激励性谈话,鼓励学生课下继续探索
通过激励性谈话引起学生的学习兴趣,通过阅读让学生初步了解莫比乌斯圈。
培养估计的意识,了解纸条的长和宽,方便下面的语言表述。
通过教师边口述边示范,让学生学会制作简单的莫比乌斯圈。每人制作一个,为下面的探索活动提供材料。
展示学生的作品,检查莫比乌斯圈做的是否正确。
让学生经历探索莫比乌斯圈的全过程。
通过自己动手做莫比乌斯圈,亲身体验它的神奇。
通过教师叙述制作要求,培养学生倾听的习惯,为探索活动提供材料。
通过让学生想象猜测,一方面培养学生联想的意识,更重要的是引出探索的活动。
在操作结果和提供的数据中,让学生感受莫比乌斯圈的神奇和数学活动的探索性。
在前面探索活动的基础上,对看似相关问题进行猜测,激发学生探索的愿望。
带着问题进行实际操作,体验数学问题的探索性。
在猜测、操作、交流等探索活动中,进一步感受莫比乌斯圈的神奇和数学活动的趣味性。
激发学生的探索的积极性,培养科学探索精神。
师:同学们,今天我们就用老师给大家准备的纸条来探索一种神奇的纸圈,这个纸圈是什么呢?大家请打开书第10页,读一读前两段。
学生阅读书中的文字。
师:通过读书,你了解到哪些信息?
学生回答可能不同,只要是意思对就给予肯定。
师:德国数学家莫比乌斯发明的这个“纸圈”到底有什么神奇之处,下面我们就一起去探索。
师:请同学们拿出一张纸条,估计一下这张纸条有多长、多宽?
学生估计,对估计准确给予表扬。使大家知道:纸条的`长30厘米,宽3厘米。
师:我们就用这张纸条做一个莫比乌斯圈。怎样做呢?把纸条儿的一端扭转180°,与另一端粘在一起,这样一个莫比乌斯圈就做好了。
教师边说边示范制作莫比乌斯圈。
师:下面同学们就用准备好的纸条也做一个莫比乌斯圈!
学生动手制作,教师巡视指导。
师:谁来展示一下你的莫比乌斯圈?
学生展示,关注是否都对。
师:同学们都有了自己的莫比乌斯圈,我们给它涂上颜色让它更漂亮。涂色的要求是:用一种颜色的彩笔在纸圈的一面涂色。可以同桌合作完成。
学生给莫比乌斯圈涂色,教师巡视指导。
师:请同学们仔细观察涂好色的莫比乌斯圈,你发现了什么?
生:两面都有颜色了。
生:太奇怪了。
师:沿一面涂色纸圈的两面都出现了颜色,真是个奇迹!这就是神奇的莫比乌斯圈!
教师板书:神奇的莫比乌斯圈。
师:请同学们接着做,你会发现更神奇的事情。听清这次的操作要求:取出一张新的纸条,在正中画一条线,再把它粘成莫比乌斯圈。
学生操作,教师巡视指导。
师:同学们想象一下,如果用剪刀沿中线把这个莫比乌斯圈剪开,结果会怎么样?
生:会得到2个莫比乌斯圈。
师:结果到底怎么样呢?请同学们用剪刀沿中线把它剪开,看一看结果会怎样。用剪刀时注意安全。
学生操作,教师巡视指导。
师:沿中线剪开后怎样?和你想象的结果一样吗?
学生可能回答:
●沿中线剪开后结果不是两个莫比乌斯圈,而是一个。
●这个新的纸圈比原来的大了。
……
师:真是出乎意料!把莫比乌斯圈沿中线剪开结果不是两个纸圈,而是一个更大的纸圈。那同学们,你们猜想一下,要是在纸条上画两条线,把纸条分成三等分,粘成莫比乌斯圈,再用剪刀沿画线剪开,猜一猜结果会怎么样?
学生可能回答:
●得到一个更大的纸圈。
●得到3个纸圈。
……
师:请同学们实际动手做一做,看一看结果会怎样?
学生动手操作,教师巡视指导。
师:这次剪开后结果怎么样?
生:得到了一大一小两个套在一起的纸圈。
师:这就是莫比乌斯圈的神奇之处!要是在纸条上画三条线,把它四等分,再粘成莫比乌斯圈,接着沿画线剪开,结果会怎样?要是画四条线呢?有兴趣的同学课下可以继续探索!
五年级的数学教案篇4
教学目标
1.通过探究知道两书之和的奇偶性。
2.能借助几何直观,认识两数之和奇偶性的必然性。
3.培养探究能力,积累观察、猜想、归纳等思维活动的经验,丰富解决问题的策略。
重难点
重点:在探究知道两书之和的奇偶性的过程中渗透解决问题的策略。
突破方法:猜想、探究、讨论的过程中理解解决问题的策略。
难点:认识两数之和奇偶性的必然性。
突破方法:举例验证中掌握两数之和奇偶性的必然性。
教学准备:
课件,两种颜色的小正方形各10个
教学过程
一、创设情境,点评激思
活动一:激趣导入
1.复习概念,引入图示。
(1)说说什么样的数是奇数和偶数?
(2)偶数可以用字母表示为?奇数呢?
2.用1个小正方形表示1,一个接一个摆成两行,偶数总能摆成一个什么图形?奇数呢?
?设计意图:】:复习奇数和偶数的概念,为学习新知做组准备。
活动二:游戏导入
1.游戏规则:一个同学转,指针指到那个数,就加上这个数的本身。和是奇数有大奖,和是偶数没有奖
2.学生尝试玩游戏
3.提问思考:为什么没有人得大奖?
?设计意图:】:学生在玩游戏的过程中感知两数之和的规律
二、引导探究,互评对话
活动一:探索验证
1.明确探究的问题:刚才的游戏,一个数加上它本身只有两种情况,偶数+偶数,奇数+奇数。要全面研究,还有什么情况?
偶数+奇数
2.用自己想到的方法探究两数之和的奇偶性。可以用举例的方法得出结论,也可以用小正方形拼一拼、想一想,为什么是这个结论。可以独立完成,或者同坐合作。注意做好记录
3.全班交流、讨论。
(1)用举例的方法验证。
(2)用小正方形拼摆的方法验证
?设计意图:】让学生自己动手想办法,寻找规律,经历过程,从而能找到两数之和的规律。
活动二:归纳结论
1.教师板书结论:偶数+偶数=偶数奇数+奇数=偶数
偶数+奇数=奇数
2.举例验证规律
3.用今天学的`规律解释前面的游戏。
活动三:巩固练习,内化新知
1.填空:
奇数+偶数=()奇数-偶数=()
偶数+偶数+偶数=()奇数+奇数+奇数+()
10个偶数想家的和是(),10个奇数相加的和是()
2.小明爸爸、妈妈今年的岁数和是奇数,几年后小明爸爸、妈妈岁数的和是奇数还是偶数?
?设计意图:】:及时练习,让学生对新学的内容得以巩固,内化所学的知识,掌握两数之和的规律,能灵活运用
三、梳理总结,赏评延展
活动一:
课堂小结
今天这节课我们学习了什么内容?你能说出奇数、偶数相加的规律吗?这些规律我们是怎样探究出来的?
活动二:作业
练习四的3、5、7题
?设计意图:】:安排以上几个练习,让学生独立思考,可以了解学生的学习掌握情况,学生也可以从练习中体验到学习的快乐。
四、板书设计
两数之和的奇偶性
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
五年级的数学教案篇5
教学内容:
长方体、正方体的体积计算
教学目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
长方体、正方体体积计算。
教学难点:
长方体、正方体体积计算
教具运用:
正方体木块若干。
教学过程:
一、复习导入
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
二、新课讲授
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的.体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长宽高
讲述:如果用字母v表示长方体的体积公式可以写成:v=abh
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:v=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。v=abh=743=84(cm3)
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业
完成课本第31页做一做第1、2题。
四、课堂小结
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
五、课后作业
完成练习册中本课时练习。
板书设计 :
长方体和正方体的体积
长方体的体积=长宽高
v=abh
正方体体积=棱长棱长棱长
v=aaa=a3
五年级的数学教案篇6
教学目的:
1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点:
用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:
根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程:
一、激发:
1、口算。
1.2×0.3 、0.7×0.5 、0.21×0.8 、1.8×0.5 、1—0.82 、1.3+0.74、 1.25×8 、0.25×0.4、 0.4×0.4 、0.89×1 、0.11×0.6、 80×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数保留一位小数保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正,说一说是怎样算的。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的.小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。
6、专项练习(根据下面算式填空)
3.4×0.91=3。094积保留一位小数是(),保留两位小数是()。
7、尝试后练习:
p10页做一做1。计算下面各题。
0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)
判断,并改错。
10.286×0.32=3.29(保留两位小数)
3.27×1.5=4.95、 1.78×0.45≈0.80(保留两位小数)
三、运用
1、一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?
虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。
2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?
3、059 3.578 3.574 3.583 3.585
四、体验:谁来小结一下今天所学的内容?
五年级的数学教案推荐6篇相关文章: