初一数学上册数学教案8篇

时间:
Indulgence
分享
下载本文

教师们需要在教案中明确每个环节的教学目的,教案的编写应注意教学内容的逻辑性和系统性,下面是69模板网小编为您分享的初一数学上册数学教案8篇,感谢您的参阅。

初一数学上册数学教案8篇

初一数学上册数学教案篇1

教学目标

1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;

2、会用计算器进行较繁杂的有理数混合运算。

教学重点

1、有理数的混合运算;

2、运用运算律进行有理数的混合运算的简便计算。

教学难点

运用运算律进行有理数的混合运算的简便计算。

有理数的'混合运算的运算顺序

也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。

你会根据有理数的运算顺序计算上面的算式吗?

2、8有理数的混合运算:同步练习

1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。

《2、8有理数的混合运算》课后训练

1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?

初一数学上册数学教案篇2

教学目标

1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2,能区分两种不同意义的量,会用符号表示正数和负数;

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点

正确区分两种不同意义的量。

知识重点

两种相反意义的量

教学过程

(师生活动)设计理念

设置情境

引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些以前学过的数够用了吗?下面的例子

仅供参考。

师:今天我们已经是七年级的学生了,我是你们的'数学老师。下面我先向你们做一下自我介绍,我的名字是xx,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知问题3:前面带有一号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解。

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

这阶段主要是让学生学会正数和负数的表示。

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:

一是它们的意义相反,如向东与向西,收人与支出;

二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

问题4:请同学们举出用正数和负数表示的例子。

问题5:你是怎样理解正整数负整数,,正分数和负分数的呢?请举例说明。

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习教科书第5页练习

初一数学上册数学教案篇3

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:

掌握有理数的两种分类方法

教学难点:

给定的数字将被填入它所属的集合中

教学方法:

问题导向法

学习方法:

自主探究法

教学过程:

一、形势归纳

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

1.有以下数字:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)

二、自学指导

学生自学课本,根据课本寻找自学的机会

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的`展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

初一数学上册数学教案篇4

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的'“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶3千米和向西行驶2千米

温度是零上10°c和零下5°c;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°c表示为10°c,零下5°c表示为-5°c概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:p18练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示; 2、分别举出几个正数与负数(最少6个)。 3、p20习题2.1:1题。

初一数学上册数学教案篇5

《1.2有理数》教学设计

?学习目标】:

1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准 与集合的含义;

3、体验分类是数学上常用的处理问题方法;

?学习重点】:正确理解有理数的概念

?学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5.对-3.14,下面说法正确的是(b)

a.是负数,不是分数

b.是负数,也是分数

c.是分数,不是有理数

d.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8.如果a与1互为相反数,则|a|=( )

a.2 b.﹣2 c.1 d.﹣1

?考点】绝对值;相反数.

?分析】根据互为相反数的定义,知a=﹣1,从而求解.

互为相反数的.定义:只有符号不同的两个数叫互为相反数.

?解答】解:根据a与1互为相反数,得

a=﹣1.

所以|a|=1.

故选c.

?点评】此题主要是考查了相反数的概念和绝对值的性质.

9.若|1﹣a|=a﹣1,则a的取值范围是( )

a.a>1 b.a≥1 c.a

?考点】绝对值.

?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.

?解答】解:∵|1﹣a|=a﹣1,

∴1﹣a≤0,

∴a≥1,

故选b.

?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.

初一数学上册数学教案篇6

【教学目标】

1、经历探索去括号法则的过程,了解去括号法则的依据。

2、会用去括号进行简单的计算。

3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。

【重、难点】

理解去括号法则,熟练运用去括号法则。

【教学过程】

一、情境创设

在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元?

思考:如何合并你算出的这个代数式中的同类项?

同步测试

1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简)

(1)女生有多少人?

(2)男生比女生多多少人?

(3)全班共有多少人?

测试

?拓展提优】

14、如果a是三次多项式,b是三次多项式,那么a+b一定是()

a、六次多项式

b、次数不高于3的整式

c、三次多项式

d、次数不低于3的整式

15、多项式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()

a、与x、y、z均有关

b、与x有关,而与y、z无关

c、与x、y有关,而与z无关

d、与x、y、z均无关

16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()

a、4 b、6 c、8 d、10

17、当x=1时,代数式mx3+nx+1的值为20xx,则当x=—1时,代数式mx3+nx+1的值为()

a、—20xx b、—20xx c、—20xx d、—20xx

18、若m=3a2—2ab—4b2,n=4a2+5ab—b2,则8a2—13ab—15b2等于()

a、2m—n b、3m—2n c、4m—n d、2m—3n

19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是()

a、4m cm b、4n cm

c、2(m+n)cm d、4(m—n)cm

初一数学上册数学教案篇7

一、教学目标:

1、知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2、能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3、情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6x2,5,cd,-1,2x2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

初一数学上册数学教案篇8

?教学目的〗

?知识与技能目标:〗理解有理数减法的意义。

?过程与方法:〗会进行有理数减法运算

?情感态度与价值观:〗

有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.

?教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。

?教学方法:〗引导发现法

?教具准备:〗尺、小黑板。

?教学过程:〗

Ⅰ.复习提问:

1.叙述有理数加法法则。

2.两个有理数的和一定大于每一个加数吗?

3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?

4.3-10有意义吗?它应当等于多少?

注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。

Ⅱ.新课讲解:

1.由问2、问3讲解有理数减法的意义。

在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。

由实际运算的例子归纳有理微减法法则。

考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。

3.讲解例题:

(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

解:∵15-5=10,∴15℃比5℃高10℃;

∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

比15℃低20℃。

(2)教科书例1、例2。

Ⅲ.做一做

课堂练习:教科书第82页练习第1~3题。

Ⅳ.课时小结

有理数减法的意义。

Ⅴ.课后作业

1.习题2.6a组第1~9题,b组选做。

《2.5有理数的减法》同步练习

2.(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的`答案得知该题的计算结果为6,那么“_”表示的数应该是.

3.(考点一)计算:(1)-2- (+10);

(2)0-(-3.6);

(3)(-30)-(-6)-(+6)-(-15);

《2.5有理数的减法》测试

16.下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.

姓名小明小丁小丽小文小天小乐

体重与标准体重的差(kg)-5+3-7+4+60

(1)谁最重?谁最轻?

(2)最重的比最轻的重多少千克?

初一数学上册数学教案8篇相关文章:

五年级上册数学教案7篇

初一上册一单元作文5篇

鲁教版四年级上册数学教案7篇

青岛五年级数学上册教案7篇

鲁教版六年级上册数学教案7篇

三年级数学上册教案人教版教案7篇

三年级数学上册教案人教版教案推荐7篇

人教版6年级上册数学教案7篇

人教版三数学上册教案7篇

人教版一年级上册数学教案5篇

初一数学上册数学教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
85339