优秀的教案能够通过情境模拟的方式,帮助学生更好地理解理论知识,教案的撰写过程能够增强教师对教学内容的掌握与信心,以下是69模板网小编精心为您推荐的分数和小数的互化教案6篇,供大家参考。

分数和小数的互化教案篇1
一、铺垫练习
1.你会把下面的数分类吗?
0.9 0.82 0.3 0.521
2.指名学生说说上面的数的计数单位各是什么?
学生回答后教师小结;一位小数的计数单位是十分之一,两位小数的.计数单位是百分之一------
3.比较下面数的大小。
0.16和0.26 0.3和0.24 4/5和2/5 2/5和2/10
学生口答,说说怎样比较的。
二、探索新知
1.教学例9。
(1)出示例9,仔细观察,说说图上提供了哪些数学信息。
(2)小组讨论:怎样比较0.5米和3/4米的大小?
学生讨论后汇报, 教师适当板书:3/4=3÷4=0.75
师:同学们,我们这样把分数化成小数的根据是什么?怎样把分数化成小数?
2.独立尝试。
(1)学生尝试用刚才学到的方法来把分数化成小数,同时指名板演,然后共同评议。
(2)小结:我们根据分数与除法的关系可以用分数的分子除以分母的方法把分数化成小数,注意计算时要根据题目要求,除不尽的保留一定的小数位数。
3.学习例10。
师:同学们,怎样才能把小数化成分数呢?
(1)谈话:仔细观察这几个小数,分别是几位小数?想一想,它们分别表示什么?怎样把它们化成分数?
(2)学生独立尝试把小数化成分数。
(3)师:谁愿意给大家来说一说小数化成分数的方法?
三、巩固练习
1.独立完成“练一练”。
学生独立完成,指名学生交流,说说怎样比较题中每组数的大小的。
2.完成练习九第7题。
学生各自在书上填空,然后请学生口答。
3.练习九第10题。
4.练习九第11题。
提醒学生理解“谁做得快一些?”所表示的实际意义。
5.思考题。
学生先独立完成,再全班学生汇报交流。
四、全课总结
1.这节课你有那些收获?
2.你还有不明白的问题吗?
分数和小数的互化教案篇2
教学目标
使学生理解并掌握百分数和分数、小数之间互化的方法.
教学重点
使学生掌握百分数与分数、小数互化的方法,并能熟练运用.
教学难点
1.在学生掌握百分数与小数基本转化规律的基础上,如何引导学生通过观察分析、概括,掌握它们互化的简便方法.
2.把不能化成有限小数的分数化成百分数.
教学设计
一、复习准备
(一)复习
1.读出下列的百分数.
20% 120% 100.5% 12.3%
2.说出下列小数所表示的意义.
0.8 1.2 0.125 1.75
3.把下面小数化成分数.
0.2 1.5 0.375 1.25
4.把下面分数化成小数.
5.把下面各数写成百分数.
(二)引入
在生产、工业和生活中进行统计和分析时,为了便于比较和计算,有时要把小数或分数化成百分数,有时要把百分数化成分数或小数.这节课,我们就来学习百分数和分数、小数的互化.
教师板书课题:百分数和分数、小数的互化
二、新授教学
(一)百分数和小数互化.
1.教学例1
把0.25、1.4.0.123化成百分数.
(1)小组讨论转化的方法
(2)教师提问:小数化成百分数分几步进行?0.25怎样化成百分数?
教师板书:
(3)学生独立将1.4、0.123化成百分数.
教师板书:
(4)做一做:把下面各小数化成百分数.
0.38、1.05、0.055、3
(5)总结把小数化成百分数的规律.
小结:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.
板书:
(6)口答:把下列各数化成百分数.
0.35 0.07 1.3 2.24 5
我们已经学会了小数化成百分数的方法,那么,百分数怎样化成小数呢?
2.教学例2
把2.7% 124% 0.4%化成小数.
(1)小组讨论转化的方法
(2)学生试做,老师巡视指导.
(3)集体订正.
教师板书:
(4)做一做:把15% 80% 3.5%化成小数
(5)总结把百分数化成小数的规律.
小结:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
板书:小数 百分数
(6)口答:把下面百分数化成分数:60% 12.5% 120%
(7)小结百分数与小数互化的方法.
(二)百分数和分数的互化.
1.教学例3
把 、 、 化成百分数
(1)思考回答:
① 、 、 能直接化成百分数吗?
②把百分数变成什么样的数就可以化成百分数?
(2)学生试做并订正.
教师说明:分子除以分母,如遇到除不尽时,通常商算到小数第四位,再用四舍五入法
取三位小数.同时要注意等号和约等号的使用.
分数和小数的互化教案篇3
教学目标:
1、利用教材提供的问题情境让学生产生把分数与小数进行互化的心理需求,并通过自己的探索找到分数与小数的互化方法。
2、培养学生培养独立探索,解决问题的能力。
教学重点:分数与小数的互化方法
教学流程
一、理解4分之3米:
1、问:“4分之3米”有多长?你能用线段图来表示吗?
画法一:把1米平均分成4份,这样的3份就是4分之3米
画法二:把3个1米的线段对齐后,平均分成4份,其中的1份,有3个4分之1米也就是4分之3米。
理解:4分之3米可以是1米的4分之3,也可以是3米的4分之1。
2、联系生活理解:生活中的4分之3个苹果,可以是1个苹果的4分之3,也可以是3个苹果的4分之1......
二、比较4分之3和0.5:
1、出示情境图:看懂图意,讨论“怎么比两条彩带的长短?”
方法一:估算的方法。4分之3大于一半,所以比0.5大。
方法二:4分之3=3÷4=0.75,0.75大于0.5
2、揭示课题:
分数和小数有时都可以表示一个具体的'数量,有时就需要互化后进行有关的比大小或是计算等。我们这节课就来学习分数和小数的互化。
3、学习分数化成小数的方法:
方法一:可以用除法,分子除以分母
方法二:可以利用分数的基本性质,把分母改写成10、100、1000后再转化成小数。
三、掌握并记忆常见的分数与小数的转化:
1、要求学生拿出自备本,有条理的记一记,算一算。
分母是2的真分数:2分之1=0.5
分母是4的真分数:4分之1=100分之25=0.25
4分之2=2分之1=0.5;4分之3=0.25×3=0.75
分母是5的真分数:5分之1=0.2;5分之2=0.4
5分之3=0.6;5分之4=0.8(依次加0.2)
分母是8的真分数:8分之1=0.125;8分之2=4分之1=0.25
8分之3=0.375;8分之4=4分之1=0.25;8分之5=0.625
8分之6=4分之3=0.75;8分之7=0.875
分母是9的真分数:(略)
2、记一记:上面这些分数转化为小数,你觉得哪些特别好记?你是怎么记的?
依次说一说,尝试背一背。
3、把25分之9、6分之5化成小数
问:你用的是什么方法?遇到了什么困难?
第一个分数:也可能会有学生把它转化成100分之36,再改写成0.36
第2个分数:是循环小数。读题目要求“除不尽的保留三位小数”。指出:分数转化成小数的时候,有时能除尽,有时不能除尽,那就根据题目要求保留。
三、巩固练习:
1、练一练:比较每组中两个数的大小。基本步骤:把分数转化成小数,然后再比较大小。
2、(第7题)学生填一填。掌握:一位小数可以改写成10分之几;两位小数可以改写成100分之几;三位小数可以改写成1000分之几。
3、(第8题)把小数化成分数。
4、(第9题)把分数化成小数。
重点讲解:(1)除不尽时的处理方法,注意“≈”和四舍五入的使用
(2)假分数,先要转化成带分数,然后再转化成小数。或直接除。
5、(第10、11题的比较)
(1)掌握该类题的书写格式:先把分数转化成小数,再把两个小数比一比,最后写出完整的比较结果。
(2)注意根据具体的情况分析该选大数还是小数,如速度快,可以看工作量大或是看工作时间少。
6、思考题:a和b都是大于0的整数,当a()时,a分之b是真分数。
当a()时,a分之b是假分数。当a()时,a分之b能化成整数。
填空时,请学生说说思考的依据是什么。
四、检查预习作业,完成全课的总结。
分数和小数的互化教案篇4
教学目标
1、知识与技能
掌握分数和小数的互化方法,并能熟练地把小数化成分数,把分数化成小数。
2、过程与方法
在学习过程中,感悟转化的数学方法,培养迁移类推的能力。
情感态度与价值观
体验学习数学的乐趣,养成自主学习的习惯。
教学过程
一、探索交流,解决问题
1、出示例1 把一条3米长的 绳子平均分成10段,每段长多少米?平均分成5段呢?
(1)学生先独立计算,然后用小数表示计算结果和用分数表示计算结果。
3÷10=0.3(米) 3÷5=0.6(米) 3÷10=33(米) 3÷5=(米) 105讨论:能否把小数直接写成分数呢?如果能,怎么写?分组讨论,再试着完成课本第的“试一试”。
(2)小结
小数化成分数时,先把小数写成分数,原来有几位小数,就在后面写几个0作分母,原来的小数去掉小数点作分子。注意能约分的要约分。
2、出示例2。把0.7,来。
(1)提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办? 学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数,再通分。提问:哪种方法比较简便?为什么?
(2)大家先来看看,两种方法:
方法一:把943711,0.25,这6个数按从小到大的顺序排列起101002545943、写成小数分别是多少? 101007的分子和分母同时乘上相同的数,转化为分母是10,100,1000…的分25数,再改写成小数。
287==0.28 25100
方法二:利用分数与除法的关系,用分子除以分母得出小数。
7=7÷25=0.28 25(3)在让学生将11化成小数。 45学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000……作分母。用分子除以分母时,出现了除不尽。)
指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。
11=11÷45≈0.24 45
(4)现在,你能把这6个数按从小到大的顺序排列了吗? 学生独立完成。
(5)小结:分数化成小数时有几种方法?
引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000……时,直接写成小数。②分母是10,100,1000……的因数时,可化成分母是10,100,1000……的分数,再写成小数。
(6)完成给出的练习。
先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母是10,100,1000……的分数,再写成小数。哪几个分数只能用一般方法。然后独立完成,选择自己喜欢的方法,把这些分数化成小数。
二、巩固应用,内化提高
1、 分别用小数和分数表示下面每个图中的涂色部分。
2、李阿姨平均每秒打0.9个字,王叔叔一分钟打50个字,谁打字快些?
5≈0.83 0.83<0.9 6答:李阿姨打字快。
3、小林从学校回家要花25分钟,小凡回家要花相同,谁家离学校远些?
1小时,如果他们两个人的.行走速度451325÷60=12412答:距离学校远的是小林家。
4、你知道什么样的最简分数能化成有限小数吗? 你想了解这个规律吗? 其实,只要把分数的分母分解质因数,如果分母中除了 2 和 5 以外,不含有其他质因数,这个分数就能化成有限小数。例如, 的分母 20 = 2×2×5,它就能化成有限小数。如果分母中含有 2 和5 以外的质因数,这个分数就不能化成有限小数。例如, 的分母 30 = 2×3×5,它就不能化成有限小数。
三、回顾整理,反思提升
本节课我们学习了分数和小数互化的方法。小数化成分数时,可以直接把小数转化成分母是10、100、1000……的分数,注意能约分的要约分。而分数化小数时,一般情况下是用分子÷分母,除不尽的按要求取近似值;如果分数的分母是10、100、1000……,可以直接化成小数;如果分母是10、100、1000的因数,可以转化成分母是10、100、1000的分数,再改写成小数。因此,在做分数化成小数的题目时,要认真观察数的特点,灵活选择方法,使得计算又对、又快。
分数和小数的互化教案篇5
【设计说明】
1.关注学生已有的知识基础,理解并掌握互化的方法。
小数的意义是小数化成分数的基础,而分数化成小数的依据是分数与除法的关系和分数的基本性质。因此,教学时先回顾相关的知识,在学生已有知识的基础上,让学生自主探究、交流讨论分数和小数互化的依据,促进学生掌握分数和小数的互化方法。
2.在注重算法多样化的同时,更注重优化。
比较分数和小数的大小的策略是比较丰富的,教学时既注重启发运用多种策略解决问题,同时又适时地提出一般的方法,那就是把分数化成小数计算比较简便。这样不仅可以让学生体会算法的多样化,还可以提高学生解决问题的能力。
【课前准备】
教师准备ppt课件投影仪
【教学过程】
⊙知识回顾,沟通联系
1.分别用小数和分数表示下面各图中的阴影部分。
小数:( )小数:( )
分数:( )分数:( )
2.想一想,填一填。
(1)0.3里面有( )个十分之一,它表示( )分之( ),写成分数是( )。
(2)0.17里面有( )个百分之一,它表示( )分之( ),写成分数是( )。
(3)0.009里面有( )个千分之一,它表示( )分之( ),写成分数是( )。
师:通过上面的练习,你认为分数和小数存在着什么联系?(板书课题:分数和小数的互化)
设计意图:学生在学习小数的意义时,已经知道小数表示的是十分之几、百分之几、千分之几……的数,前面学生又了解了“分数与除法的关系”,因此,这里设计练习的目的就是唤起学生的回忆,建立分数和小数之间的联系,为学生进一步学习做好准备。
⊙自主探究,总结规律
(一)教学例1。
1.课件出示教材77页例1。
2.请学生在练习本上试做,教师巡视并进行个别指导。
3.交流:教师根据巡视的情况,选择两种不同形式的结果投影展示。
4.让展示的同学介绍自己在做题时是怎么想的,其他同学可以补充。
5.思考:根据前面同学的汇报,你对这两种不同形式的结果有什么认识?
(引导学生总结并确定两种不同形式的结果是相等的,同时注意最后的结果要化成最简分数)
0.3=0.6=
6.比一比,看谁做得快。
(1)填一填。
0.07=0.24==
0.123=0.032==
(2)把下面的小数化成分数。
0.4 0.05 0.37 0.45 0.013
7.提问:从上面的几个题目中,你发现小数化成分数有什么简便方法了吗?小数化成分数后要注意什么?
(学生讨论后汇报)
师生共同总结:把小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,化成分数后,能约分的要约分。
分数和小数的互化教案篇6
课时课题
小数化成分数,把分母是10、100、100......的分数化成小数
课时
1
教学目标
掌握把小数化成份数把分母是10,100,1000,......的份数化成小数的方法和步骤,并能正确、熟练地进行互化。
教学重点、难点
重点、难点:
把小数化成份数把分母是10,100,1000,......的份数化成小数的方法和步骤。
教具、学具准备:
教 学过程:
备 注
一、复习准备(小黑板)
1、说出下列小数表示的意义:
0.40.350.011.283.0092.965
2、根据意义说出小数:
百分之六十五十分之九三有千分之十八一又百分之七
二、知识引入
投影出示:下面各题,左边括号里填上小数,右边括号里填上分数:
7角=()元=()元
4角5分=()元=()元
1元3角=()元=()元
阴影部分用小数表示是(),用分数表示是()。
提问:你认为小数与分数可以转化吗?(揭示课题)
三、新课展??
1、出示例1:
把0.70.91.250.375化成分数。
(1)学生尝试练习
(2)讨论:学生说出结果,教师板书
0.7=7/100.09=9/1001.25=125/100=11/40.357=375/100=3/8
对以上每一个结果均问“为什么?你是怎么想到的?”
提问:能把小数化成分数吗?试一试。
(3)练习:把下面的小数化成分数(两人做在投影片上)
0.90.4110.0570.280.62.125
(学生练习后,用投影反馈)
(4)小结:
提问:谁能说一说小数化成分数,怎么化?
学生回答后明确:小数化成分数,可以直接写成分母是10,100,1000,......的分数,能约分的`再约分。(全体齐读课本中关于小数化成
教学过程
备 注
分数的方法)
(5)巩固练习:把下面的小数化成分数
0.651.750.0086.120.321.16
反馈、矫正以后提问:
反过来,你能把分母是10,100,1000,......的分数化成小数吗?
2、出式例2:
把下列分数化成小数
1100371/1000
(1)学生练习(两人板演)
(2)反馈讨论:检查板演初步明确化法。
(3)继续练习:把下列分数化成小数:
3100311004710
(学生练习后反馈)
(4)小结:
提问:通过两次练习,谁能说一说怎样把分母是10,100,1000......的分数化成小数?
学生回答后明确:把这样的分数化成小数,可以直接把分数写成小数。
提问:小数的位数与分数的分母有什么关系?
四、综合练习
1、口答:把小数化成分数,把分数化成小数:
0.71071001.452.009
310006.025211/10003.75
2、比较39/1000和0.309的大小
(1)提问:一个分数,一个小数能直接比较大小吗?怎么办?
学生讨论明确:可以统一分数比较,也可以统一成小数比较。
(2)学生练习
(3)反馈:学生回答,教师板书并强调比较过程和书写要求:统一成小数比较统一比较:
39/1000=0.03930/1000=39/10000
0.309=0.3090.309=309/1000
因为0.039〈0.309因为39/1000〈309/1000
所以39/1000〈0.309所以39/1000〈0.309
(4)比较两种方法后提问:
一般情况下,分数与小数比较大小时,统一什么比较方便?为什么?
3、练习:课本p106第4题
五、课堂总结
1、今天学习了什么知识?
2、通过学习,你学会了什么?
六、课堂作业《作业本》
根据小数的意义,把小数化成分数,学生比较容易掌握,要注意的是,化成分数后能约分的要约成最简分数,还有整数部分不能忘写。
分数和小数的互化教案6篇相关文章: