教案的实施过程是一个不断调整与优化的动态过程,需灵活应对,教案中应列出所需的教学资源,避免上课时出现材料准备不足的情况,69模板网小编今天就为您带来了小数的性质教案7篇,相信一定会对你有所帮助。
小数的性质教案篇1
教学内容
教科书第80~81页,练习十六的习题.
教学目的
1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.
2.使学生在理解的基础上掌握分数、小数的基本性质.
教学过程
一、数的整除
1.整除的意义.
教师:想一想,什么叫做整除?指名回答.
教师进一步强调:整除中说的数是什么数?(整数.)
商是什么数?(整数.)有没有余数?(没有余数.)
教师:什么叫做除尽?(两数相除,余数是0.)
整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:
被除数 除数 商 余数
整除 整数 不等于o的整数 整数 o
除尽 数 不等于o的数 数 o
教师:可以看出整除是除尽的一种特殊情况.
2.能被2、5、3整除的数的特征.
教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:
能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)
能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)
教师:什么叫做奇数?什么叫做偶数?
根据什么来判断一个数是奇数还是偶数?
3.约数和倍数.
教师:根据整除的`概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:
能说6是约数,15是倍数吗?应该怎么说?
教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.
教师:一个数的约数的个数是怎样的?(有限的.)
其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)
一个数的倍数的个数是怎样的?(无限的.)
其中最小的倍数是什么数?(这个数本身.)
做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.
4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.
教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.
让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.
5.分解质因数.
指名说一说质因数、分解质因数的含义.
做练习十六的第5题.学生独立解答,教师巡视,集体订正.
6.公约数、最大公约数和公倍数、最小公倍数.
(1)复习概念.
教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.
什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.
教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)
质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)
两个不同的质数一定互质吗?(两个不同的质数一定互质.)
互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)
(2)课堂练习.
做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.
做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.
小数的性质教案篇2
教学目标
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重难点
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学工具
ppt课件
教学过程
出示课件在括号里填上适当的数
1元=( )角=( )分 1分米=( )厘米=( )毫米
3米=( )分米=( )厘米 5元=( )角=( )分
(一)、创设情境,引导探索
1师:老师了解到商店的一把勺子的标价是3.00元,在日常生活中说是多少钱呢?(3元),3元和3.00元是什么关系呢?(3=3.00元)出示一副手套的标价是2.50元,我们把2.50元平时说成是多少钱?(2.5元)
师:为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
二、探究新知、课中释疑
1.教学例1。让学生动手操作量出三张长0.1米 0.0—1米 0.001米的纸条。
你发现这三张纸条的长度是怎样的?
(1)课件出示1分米、10厘米、100毫米的线段图
请比较一下它们的大小。学生略加思考后马上提问,要求说说你是怎么知道的。(即想的过程)
演示:重合法比较1分米、10厘米、100毫米的大小。
板书并演示:1分米=10厘米=100毫米
(2)导入例1:
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示:1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米 0.1=0.10=0.100
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,有什么变化?在这个小数的什么位置(强调是末尾,不是后面)?多(少)0还可以怎么说?
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
问:谁涂的面积大?0.30和.0.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
(在原板书下再板书:0.30=0.3)
(5)从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的数所在数位不变,所以小数的大小也就不变。
师:小数中间的零能不能去掉?能不能在小数中间添零?
生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。
师:那整数有这个性质吗?(要强调出小数与整数的区别)
(6)判断下面的说法对吗?
(1 在一个数的末尾添上“0”或去掉“0”,小数的大小不变。
(2) 在小数点的后面添上“0”或去掉“0”,小数的`大小不变。
(3)在小数的末尾添上“0”或去掉“0”,小数的大小不变。
(4)把小数的末尾的“0”去掉,它的计数单位就发生了变化。
(五)、总结
师:什么叫小数的性质?
十二、作业设计
完成教科书第64页第一题。
板书
小数的性质
观察:1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.1=0.01=0.001 0.3=0.30
小数的基本性质:小数的末尾添上或去掉“0”,小数的大小不变。
小数的性质教案篇3
教学目标:
1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。
2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。
3、情感目标:培养学生爱学数学的情感。
教学重点:
理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。
教学难点
掌握在小数部分什么位置添“0”去“0”,小数大小不变。
教具准备:
学习纸“小魔术”纸卡多媒体课件
课时:1课时
教学过程:
一、情景导入(小魔术)
1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?
生:1,2,3,大。
师:把1变成10,10和1比扩大了10倍,……
2、老师还有一个数0.1,我们再来试一试。
引起学生的冲突:到底变大了吗?
(设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)
这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。
二、探求新知
(一)教学例1
1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?
师:请拿出你的学习纸把第一题完成。
汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。
教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。
(0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米平均分成10分,1份就是1分米。所以0.1米=1分米。
0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米平均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。
0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米平均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)
因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米
师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。
(设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。
仔细观察这组小数,你有什么发现?
生:小数的末尾添上“0”,小数的大小不变。
师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?
师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。
学生操作,交流汇报。
课件展示。
(教师在学习研究中要加强指导)
2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?
学生说说。
师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)
总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。
(设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)
3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(二)小数性质的应用
1、教学例2
师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。
电脑演示:化简下面的小数。0.70=105.0900=
教学0.70=0.7
问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)
②0.70与0.7它们的大小不变,但意义相同吗?
(不同,0.70表示70个1/100,0.7表示7个1/10)
教学105、0900=105.09
问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)
2、教学例3
电脑演示:不改变数的大小,把下面各数写成三位小数。
0.2=4.08=3=
师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)
师:3如何改写成三位小数?这个小数点不点的话可以吗?
注意:
a、在小数的末尾添“0”。
b、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。
师:应用小数性质时,应注意什么?(小数、末尾)
三、巩固练习
课本59页的做一做。
2、开火车的形式回答59页的做一做。
问:你是怎样化简和改写这些数的.?
四、全课小节
1、这节课你学到了什么?
小数的末尾添上“0”或去掉“0”,小数的大小不变。
2、我们是怎样探索小数的性质的?
在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
板书:小数的性质
小数末尾“0”对小数的大小的影响
小数的末尾添上“0”或去掉“0”,小数的大小不变。
0.1米=0.10米=0.100米
0.1=0.10=0.100
小数的性质教案篇4
小数的性质是小数四则运算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。在教学设计中,我采用让学生合作探究的形式,学生通过动手、动口、动脑,联系生活与实践来学习数学,经过教学实践,取得良好的效果。具体教学如下:
一、创设开放式问题情境,激发兴趣,让学生成为发现者。
教育心理学认为:学生的世界有一种强烈的要求——自己是探索者、发现者。为探究新知,我创设的认识冲突,目的在于迎合学生“好奇”、“好胜”的心理需求,把学生引入“未知—已知—未知—已知”的思维境界,所以在新课的导入,我联系生活实际,让学生感知小数的性质在生活中的运用。
上课开始,我对学生说:“同学们,前几天,老师去超市买毛巾和手套。发现了一个奇怪的现象:第一个超市毛巾、手套的标价分别是6.5元、8元;第二个超市毛巾、手套的标价分别6.50元,8.00元,你能告诉老师该买哪个超市的毛巾和手套吗?既然两个超市的毛巾和手套价格一样,为什么写法却不一样呢?”通过这样设疑,让学生发现了问题,激发了学生强烈的研究兴趣。这样既培养了学生的创造性思维,又为他们创设了一个主动探索和追求成功的意境,体现数学自身的乐趣。
二、开放合作式教学过程,主体主动参与,让学生成为研究者。
开放式课堂教学的核心是使学生成为学习的主人,让他们主动参与到知识的.形成过程中去,自主合作学习,体验研究与成功的乐趣。为此,我设计三个层次:第一层次先请全班学生用手势比划一个新生婴儿的身长?再让学生猜一猜哪位医生说得对?
第一位医生说:“婴儿身长0.5米。”
第二位医生说:“婴儿身长0.50米。”
第三位医生说:“婴儿身长0.500米。”
最后让学生拿出示先准备的米尺小组合作讨论、验证。
学生在上述讨论、观察、感知、验证的基础上,初步了解小数的数位增加了,但小数的大小却没有变。
第二层次:每位学生出示先准备的两个大小一样的正方形,分别涂出它的0.3和0.30,从中你发现了什么?
学生通过动手实践,发现了0.3=0.30,感受到了成功的喜悦后,我继续引导学生:0.3=0.30从左往右观察你发现了什么?从右往左观察你发现了什么?你能把这两个规律合成一句话吗?
第三层次:为了使学生更好地理解,运用小数的性质,我设计了两个基础练习:一是有关小数性质概念的判断题;二是思考一些具体的数末尾的“0”能否去掉。
这三个层次的教学,我为学生了一个思考与合作,交流与创新的空间,充分调动了学生的积极性,让学生感受到学习数学的乐趣。
三、着眼知识的应用过程,完善知识的形成过程。
学生经过实践得到了理论的认识,还必须回到实践中去。在发生、发展中认识真理,在应用过程中检验和发展真理。故此,我让学生带着思考题自学小数性质的作用,并解决课前提出的问题,完成知识的形成过程。
四、组织形式多样的练习,让学生享受数学思维的快乐。
围绕小数性质的内容,我组织多种形式的练习加强学生对小数性质的理解运用。最后,我让学生玩一个游戏:每位学生手中都发有一张卡片,卡片上写有不同位数的小数;老师宣读数,持有与宣读的数相等的卡片数的同学们互为朋友,一同去操场活动。
通过离场的游戏,我让学生在积极思维的状态中,结束新课,让每一个学生学习到不同的数学,享受到不同的成功。
这一节课,学生在一系列探究活动中,学习兴趣浓厚,参与面广,理解和掌握了小数的性质,并会应用小数的性质解决一些问题。让学生通过质疑、讨论、猜测、观察、实践等活动感受到知识的内在联系,经历了“做”数学的过程,体验了数学发现的乐趣和艰辛,获得了积极良好的情感体验,并获得从事数学探究活动的经验。
小数的性质教案篇5
教材简析:
这部分内容包括小数的读写和意义。它是在学生对小数和分数有了初步认识的基础上进行学习的,是学生系统学习小数知识的开始,同时又是学习小数四则运算的基础。教材呈现了四种不同的鸟及鸟蛋的质量,通过引导学生提出与鸟蛋质量有关的问题引入对小数的意义和读写法的学习。小数的意义是进一步教学小数性质、比较小数大小的规则、小数点移动引起小数大小变化的规律、名数改写的方法的基础,因此是本信息窗教学的重点,也是难点。
教学目标:
1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;
2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。
3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。
教学过程:
一、创设情境,复习引入
1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?
(学生举例回答,师订正。)
(根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10)
教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)
学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。
2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)
[设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。
二、结合情境,探究新知
1.学习小数的读写。
谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)
(1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。
(2)全班交流订正。
(3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。
谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)
下面我们先来研究一下0.25千克中的0.25表示什么意思?
2.学习两位小数的意义。
谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)
(1)出示一张正方形纸片。
谈话:如果正方形纸片用1表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)
(师板书:0.11/10 0.011/100)
(2)在正方形纸片上表示出0.25。
谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?
(小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)
板书:0.25 25/100
(3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?
板书:0.05 5/100
0.10 10/100
(4)小组讨论:这些小数有什么共同特点?
(全班交流。教师引导学生概括出两位小数表示的意义)
3.学习三位小数的意义。
(1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)
(2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)
(3)多媒体出示0.305、0.360的.阴影方块图,阴影部分表示什么?
(4)引导学生概括出三位小数表示的意义
4.总结小数的意义和计数单位。
(1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?
(学生寻找生活中的小数,并结合实际说出它们的意义。)
(2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?
(集体交流,师引导学生总结出小数的意义。)
[设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。
三、情境练习,巩固提高
1.课件出示自主练习第一题。
学生分别用分数和小数表示图中的阴影部分。
2.自主练习第3题。
学生独立读题,再说一说小数和分数之间的联系。
[设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。
四、课堂总结
谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。
小数的性质教案篇6
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。
教学目标:
1进一步掌握小数点位置的移动引起小数大小的变化。
2能根据要求正确移动小数点的位置。
3感受数学知识的严谨,养成认真、仔细的习惯。
教学重点:
进一步掌握小数点位置的移动引起小数大小的变化。
教学难点:
根据要求正确移动小数点的位置。
教学过程:
一、基本练习
1小数点位置移动引起小数大小变化的规律是什么?
2练习十六第3题。
学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。
二、指导练习
1第8题
老师针对不同的学生进行指导。
第9题请同学们先汇报收集的资料,再算一算。
3第10题
注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。
三、独立练习
1练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。
2学生独立完成第6,7题
四、拓展练习
练习第11题。
引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。
五、小结
哪些同学愿意谈谈今天的收获?
小数的性质教案篇7
教学目标:
1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。
2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。
3、在数学探究活动中树立学习数学的信心和兴趣。
教学重点:
小数的性质。
教学难点:
理解小数的性质。
教具学具准备:
课件、练习纸。
教学过程:
一、创设情境,激发兴趣
师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。
生1:法术失灵了。
生2:0.1,0.10,0.100米这三个长度一样长。
老师板书:0.1米,0.10米,0.100米
二、主动探素,体会领悟
1、初步感知小数的性质。
师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。
拿出老师提供的空白练习纸,把你的想法写下来。
(1)学生动手写下来。
(2)学生汇报。
生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。
老师适时板书:0.1米=0.10米=0.100米。
(3)观察0.1=0.10=0.100初步认识小数的性质。
师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。
生1:在小数的后面加上一个0或加上两个0,小数大小是一样。
生2:在小数的末尾添上0,小数大小不变。
生3:在小数的末尾去掉0,大小是一样的。
2、深化认识小数的性质。
(1)纯小数中比一比
师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。
练习纸:
两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。
三个大小相等的正方体,分别平均分成10份、100份、1000份。
生动手写小数,涂一涂,比一比,师适时板书。
(2)混小数中比一比
师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?
出示一组混小数,让学生写小数,比一比。
师:大屏幕上的涂色部分应该用哪两个小数来表示?
生:1.2和1.20
师:它们相等吗?
生:看涂色部分是一样大的。
师动态演示两个阴影部分相等。师:你还能举出这样的`例子吗?
生举例:如1.5=1.50,2.6=2.60
师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。
(3)小结小数的性质,揭示课题。
生1:小数的后面无论添上几个0,它都不变。
生2:小数的末尾添上0,去掉0,大小都不变。
根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天来学习的内容:小数的性质(板书课题)
3、探究小数性质的内涵
师:下面请看到大屏幕,
这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)
4、教学小数性质的应用
(1)化简小数
师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?
生汇报,如:109.900中末尾的2个0可以去掉。
师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),
出示例3,化简小数:0.70 105.0900
生独立完成,汇报,师讲评。
0.70=0.7 105.0900=105.09
(2)改写小数
师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)
出示教学例4,不改变数的大小,把下面各数写成三位小数。
0.2 4.08 3
三、应用新知、解决问题。
1、做一做
(1)化简下面各数。
0.40 1.850 2.900 0.080 12.000
(2)不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
2、辨一辨:
因为0.2=0.20,所以0.2和0.20没有区别。
3、填一填
把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。
四、总结交流
通过本节课的学习,你有什么收获?
板书设计:
小数的性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
1分米10厘米100毫米
0.1米=0.10米=0.100米
0.1=0.10=0.100
小数的性质教案7篇相关文章:
★ 火的教案模板7篇