数学比例教案8篇

时间:
Indulgence
分享
下载本文

我们在准备教案时,通常会参考理论和教学大纲,以保证内容的科学性,通过设置探究性任务,教案能够激发学生的好奇心与探索精神,以下是69模板网小编精心为您推荐的数学比例教案8篇,供大家参考。

数学比例教案8篇

数学比例教案篇1

教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习

1.让学生说说什么是成正比例的量:

2.用投影片出示下面的题:

(1)下面各题中哪两种量成正比例?为什么?

①笔记本单价一定,数量和总价:

⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

二、导入新课

教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

三、新课

1.教学例4。

出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:

(1)表中有哪两种量?

(2)所需的加工时间怎样随着每小时加工的个数变化?

(3)每两个相对应的数的乘积各是多少?

学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

10 × 60 =600。

30 × 20 =600。

40 × 15 =600,

“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

2.教学例5。

用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

(1)理解题意,填写装订本数。

“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

“这40本是怎么计算出来的?”(用600÷15)

“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

(2)观察分析表中两种量的变化规律。

让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

15 40

20 30

25 24

一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

1,单价一定.数量和总价。

2,路程一定,速度和时间。。

3,正方形的边长和它的面积。

1.时间一定,工效和工作总量。

二、导入新课

教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

板书课题:正比例和反比例的比较

三、新课

1.教学例7。

出示例7的两个表:

表1 表2

让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

在表l中: 在表2中:

相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

一定。因此,路程和时间 ,路程是一定的。因此,速

成正比例关系。 度和时间成反比例关系

然后提问:

(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

板书:速度×时间=路程

=速度 =速度

教师:当速度一·定时,路程和时间成什么比例关系?

教师:当路程一定时,速度和时间成什么比例关系?

教师:当时间一定时。路程和速度成什么比例关系?

2.比较正比例和反比例关系。

教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

四、巩固练习

1.做教科书第28页“做一做”中的题目。

让学生自己填,并说一说为什么。

2.做练习七的第1—2题。

教师巡视,个别辅导,最后订正。

五、小结

教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

数学比例教案篇2

教学目标:

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:

成正比例的量的特征及其判断方法。

教学难点:

理解两个变量之间的比例关系,发现思考两种相关联的'量的变化规律.

教 法:

启发引导法

学 法:

自主探究法

教 具:

课件

教学过程:

一、定向导学(5分)

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

4、导入课题

今天我们来学习成正比例的量。

5、出示学习目标

1、理解正比例的意义。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)

自学内容:书上45页例1

自学时间:8分钟

自学方法:读书法、自学法

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

2、正比例关系式是什么?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定

(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

y/x=k(一定)

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)

第46页正比例图像

1、正比例图像是什么样子的?

2、完成46页做一做

3、各组的b1同学上台讲解

四、质疑探究(5分)

1、第49页第1题

2、第49页第2题

3、你还有什么问题?

五、小结检测(8分)

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测

1、49页第3题。

六、堂清作业(9分)

练习九页第4、5题。

数学比例教案篇3

一、教学目标

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点

重点: 理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计

(一)创设情境,提出问题

1. 复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天 第二天

运输次数 2 4

运输量(吨) 16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少? (16 : 2)

货车第二天的运输量与运输次数的比是多少?(32 :4)

货车第二天的运输量与第一天运输量的比是多少?(32 :16)

(师根据学生的回答,将答案一一贴或写于黑板)

2 :16; 4 :32; 16 :2; 32 :4;

16 :32; 2 :4; 32 :16; 4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9 和 9∶12

总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?我们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,我们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的.积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例.

6∶3 和 8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和 6

因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结

在这节课中你又有什么新的收获?

数学比例教案篇4

教学内容:

1、本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。

2、学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。

教材分析:

对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。

设计理念:

教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面

1、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的.量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的组织者与引导者。

2、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。

教学目标:

基于对教材的理解和分析,我将该节课的教学目标定位为

1、帮助学生理解正比例的意义。用字母 表示变量之间的关系,加深对正比例的认识。

2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。

3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。

重点难点:

理解正比例的意义。

重难点处理

学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,组织能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。

教学过程:

说教学策略和方法,引入新课。

首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察—讨论―—再观察—再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格1、表格2,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例, “周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生独立经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。

最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。

数学比例教案篇5

从容说课

我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了

用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想

此外,解决实际问题时.还要引导学生体会知识之间的联系以及知识的综合运用

教学目标

(一)教学知识点

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程

2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力

(二)能力训练要求

通过对反比例函数的应用,培养学生解决问题的能力

(三)情感与价值观要求

经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用

教学重点

用反比例函数的知识解决实际问题

教学难点

如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题

教学方法

教师引导学生探索法

教学过程

Ⅰ.创设问题情境,引入新课

[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用

[师]很好;学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学

Ⅱ. 新课讲解

某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积s(m2)的变化,人和木板对地面的压强p(pa)将如何变化?如果人和木板对湿地地面的压力合计600 n,那么

(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?

(2)当木板画积为 0.2 m2时.压强是多少?

(3)如果要求压强不超过6000 pa,木板面积至少要多大?

(4)在直角坐标系中,作出相应的函数图象

(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流

[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题

请大家互相交流后回答

[生](1)由p=得p=

p是s的反比例函数,因为给定一个s的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是s的反比例函数

(2)当s= 0.2 m2时, p==3000(pa)

当木板面积为 0.2m2时,压强是3000pa.

(3)当p=6000 pa时,

s==0.1(m2)

如果要求压强不超过6000 pa,木板面积至少要 0.1 m2

(4)图象如下:

(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围

[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?

[生]第三象限的曲线不存在,因为这是实际问题,s不可能取负数,所以第三象限的曲线不存在

[师]很好,那么在(1)中是不是应该有条件限制呢?

[生]是,应为p= (s>0).

做一做

1、蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r(Ω)之间的函数关系如下图;

(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?

(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10a,那么用电器的可变电阻应控制在什么范围内?

[师]从图形上来看,i和r之间可能是反比例函数关系.电压u就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(u),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.

[生]解:(1)由题意设函数表达式为i=

∵a(9,4)在图象上,

∴u=ir=36

∴表达式为i=

蓄电池的电压是36伏

(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6

电源不超过 10 a,即i最大为 10 a,代入关系式中得r=3.6,为最小电阻,所以用电器的可变电阻应控制在r≥3.6这个范围内

2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于a,b两点,其中点a的坐标为(,2)

(1)分别写出这两个函数的表达式:

(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流

[师]要求这两个函数的表达式,只要把a点的坐标代入即可求出k1,k2,求点b的

坐标即求y=k1x与y=的交点

[生]解:(1)∵a(,2)既在y=k1x图象上,又在y=的图象上

∴k1=2,2=

∴k1=2,k2=6

∴表达式分别为y=2x,y=

∴x2=3

∴x=±

当x= ?时,y= ?2

∴b(?,?2)

Ⅲ.课堂练习

1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空

(1)蓄水池的容积是多少?

(2)如果增加排水管,使每时的排水量达到q(m3),那么将满池水排空所需的时间t(h)将如何变化?

(3)写出t与q之间的关系式;

(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?

(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?

解:(1)8×6=48(m3)

所以蓄水池的容积是 48 m3

(2)因为增加排水管,使每时的排水量达到q(m3),所以将满池水排空所需的时间t(h)将减少.

(3)t与q之间的关系式为t=

(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)

(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空.

Ⅳ、课时小结

节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.

Ⅴ课后作业

习题5.4.

板书设计

§ 5.3反比例函数的应用

一、1.例题讲解

2.做一做

二、课堂练习

三、课时小节

四、课后作业(习题5.4)

数学比例教案篇6

【教学内容】

比和比例。

【教学目标】

1.使学生进一步理解比和比例的含义及性质,会化简比和求比值,会解比例。

2.经历比和比例的复习,体验对比、归纳的学习方法,培养学生归纳整理、灵活运用知识的能力。

【重点难点】

理解比和比例、求比值及化简比等知识。

【教学准备】

多媒体课件。

【复习导入】

教师:我们已经学习了比和比例,你知道比和比例的哪些知识?

学生逐一说出一些知识后,教师揭示课题。

【归纳整理】

1.复习比和比例的意义和性质

出示表格,通过提问进行填空。

引导提问:

什么叫做比?举例说明。各部分名称是什么?

什么叫做比的基本性质?举例说明。

什么叫做比例?举例说明。各部分名称是什么?

什么叫做比例的基本性质?举例说明。

(1)组织学生议一议,并相互交流。

(2)指名学生汇报,汇报时注意举例说明,并进行集体评议。

(3)学生汇报后,教师板书表格。

比例的基本性质有什么用处?

指名学生回答。

练习:解比例:

一人板演,其余做在草稿本上。

2.复习比、分数、除法的关系。

提问:比和分数有什么关系?

比和除法有什么关系?

出示表格:

比、分数与除法的`关系:

组织学生认真填写表格,并议一议,相互交流。

用投影仪汇报学生的完成情况,并进行集体评议。

教师根据学生的交流板书:

教师举例:5∶6==()÷()

由一名学生板演,其他做在练习本上。

3.复习求比值和化简比。

出示习题:化简下面各比并求比值。

请四名学生板演:其余学生做在练习本上。

做完后集体订正,请同学们说一说求比值与化简比的方法。

出示表格。

化简比与求比值的不同之处

(1)组织学生独立思考,认真填写表格。

(2)学生互相议一议,互相交流。

(3)指名说一说,并进行集体评议。

教师板书:

4.复习比例尺。

(1)什么叫做比例尺?

指名回答后,教师板书:=比例尺

(2)说出下面各比例尺的具体意义。

①比例尺1:3000000表示

②比例尺20:1表示

③比例尺表示

组织学生先想一想,同桌相互交流。

教师指名说。(多点一些基础较差的人说)

(3)巩固练习。

①求比例尺。

一条绿化带长350m,在平面图上用7cm的线段表示。这幅图纸的比例尺是多少?

②求实际距离。

在比例尺是的地图上,量得a地到b地的距离是5cm。求ab两地的实际距离。

学生独立作业后再集体订正。

答案:①1∶5000②400km。

【课堂作业】

教材85页练习十七第1题。

学生独立作业,然后再集体订正。

【课堂小结】

通过这节课的学习,你对比和比例有了更深刻的认识了吧。你学到了哪些知识,同桌之间相互说一说。

【课后作业】

完成练习册中本课时的练习。

数学比例教案篇7

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从物理问题中建构反比例函数模型.

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教具准备

多媒体课件.

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流i(安培)和电阻r(欧姆)成反比例,当电阻r=5欧姆时,电流i=2安培.

(1)求i与r之间的函数关系式;

(2)当电流i=0.5时,求电阻r的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量i与r之间的反比例函数关系,可设出其表达式,再由已知条件(i与r的一对对应值)得到字母系数k的值.

生:(1)解:设i=kr ∵r=5,i=2,于是

2=k5 ,所以k=10,∴i=10r .

(2) 当i=0.5时,r=10i=100.5 =20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力f与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力f不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律” 有

fl=1200×0.5.得f =600l

当l=1.5时,f=6001.5 =400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力f不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

fl=600,

l=600f .

当f=400×12 =200时,

l=600200 =3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

fl=600,f=600l .

而f≤400×12 =200时.

600l ≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为f,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得fl=k,即f=kl (k为常数且k>0)

根据反比例函数的性质,当k>o时,在第一象限f随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x -0.4成反比例,

∴设y=kx-0.4 (k≠0).

把x=0.65,y=0.8代入y=kx-0.4 ,得

k0.65-0.4 =0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积v的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1 kg/m3时,v的值,首先v和ρ的函数关系.

生:v和ρ的反比例函数关系为:v=990ρ .

生:当ρ=1.1kg/m3根据v=990ρ ,得

v=990ρ =9901.1 =900(m3).

所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

板书设计

数学比例教案篇8

教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

教学过程:

一、引入

教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

二、课堂练习

1.分析、研究第3题。

让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积

= 长 =宽

提问:

当面积一定时,长和宽成什么比例关系?

当长一定时,面积和宽成什么比例关系?

当宽一定时,面积和长成什么比例关系?

教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。

运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系

3.第5题,让学生独立做,教师巡视,注意个别辅导。

4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

5.第7题,学生独立解答后,选一题说说是怎样解的。

6.学有余力的学生做第8题。

数学比例教案8篇相关文章:

一年级下册数学教案模板8篇

捡树叶数学教案8篇

幼儿园数学分类教案8篇

中班数学量的比较教案8篇

大班的数学教案8篇

小班数学量的比较教案8篇

小学数学教案模板优秀8篇

幼儿数学量的测量教案8篇

找规律数学活动教案8篇

小学三年级数学教案精选8篇

数学比例教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
76974