运算法则教案5篇

时间:
Youaremine
分享
下载本文

教案可以帮助教师设计适当的教学活动,教案的撰写过程,其实是教师对教学内容进行深度解读、对教学环节进行科学规划的系统性思考过程,69模板网小编今天就为您带来了运算法则教案5篇,相信一定会对你有所帮助。

运算法则教案5篇

运算法则教案篇1

1教学目标

1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。

2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、通过学生分组探究进行活动,掌握对数的重要性质。通过做练习,使学生感受到理论与实践的统一。

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。

2学情分析

现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。

3重点难点

重点:

(1)对数的概念;

(2)对数式与指数式的相互转化。

难点:

(1)对数概念的理解;

(2)对数性质的理解。

4教学过程

4.1第一学时

教学活动活动1【导入】创设情境引入新课

引例(3分钟)

1、一尺之棰,日取其半,万世不竭。

(1)取5次,还有多长?

(2)取多少次,还有0.125尺?

分析:

(1)为同学们熟悉的指数函数的模型,易得

(2)可设取x次,则有

抽象出:

2、xx年我国gpd为a亿元,如果每年平均增长8%,那么经过多少年gpd是xx年的2倍?

分析:设经过x年,则有

抽象出:

活动2【讲授】讲授新课

一、对数的概念(3分钟)

一般地,如果a(a>0且a≠1)的b次幂等于n,就是=n那么数b叫做a为底n的对数,记作,a叫做对数的底数,n叫做真数。

注意:①底数的限制:a>0且a≠1

②对数的书写格式

二、对数式与指数式的互化:(5分钟)

幂底数←a→对数底数

指数←b→对数

幂←n→真数

思考:

①为什么对数的定义中要求底数a>0且a≠1?

②是否是所有的实数都有对数呢?

负数和零没有对数

三、两个重要对数(2分钟)

①常用对数:

以10为底的对数,简记为:lgn

②自然对数:

以无理数e=2.71828…为底的对数的对数

简记为:lnn.(在科学技术中,常常使用以e为底的对数)

注意:两个重要对数的书写

课堂练习(7分钟)

运算法则教案篇2

教学目标:

1、知识与技能:四则运算意义的深入理解,归纳整数、小数、分数计算法则的异同点,进一步总结计算时应遵循的一般规律及四则运算中的一些特殊情况。

2、过程与方法:培养运用法则熟练计算的能力和对学过的知识进行归类整理、比较异同、形成知识结构的能力。

3、情感态度与价值观:探索知识间的内在联系,认识事物本质。

教学重点:

整理四则运算的意义计算法则。

教学难点:

对四则运算算理本质规律的认识和理解。

教学准备:

多媒体课件

教学过程:

一、提问导入

我们学过哪些运算?(加法、减法、乘法、除法),每一种运算都有其自己的含义,也有其自己的计算法则。下面我们就来学习整理这一部分的知识。

回顾复习方法:(幻灯片出示)

请你按照复习方法试着整理这一部分知识,计算法则要根据具体实例说清楚。

(设计意图:引导学生进行知识点的复习)

二、整理复习

(一)学生汇报,适时补充

(二)教师需要知道的相关知识

1、四则运算的意义

加法的意义:把两个(或几个)数合并成一个数的运算,叫做加法。

减法的意义:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。

乘法的意义:求几个相同加数的和的简便运算。

(1)整数乘法的意义:求几个相同加数的和的简便运算。

(2)小数乘法的意义

小数乘整数的意义与整数乘法的意义相同,也是求几个相同加数的和的简便运算;

一个数乘纯小数的意义,就是求这个数的十分之几、百分之几是多少。

一个数乘小数的意义,就是求这数的混小数倍是多少。

(3)分数乘法的意义

分数乘整数的意义与整数乘法的意义相同,也是求几个相同加数和的简便运算;

一个数乘分数的意义,就是求这个数的几分之几是多少;

一个数和乘假分数或带分数的意义,是求这个数的假分数(或带分数)倍是多少。

除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

运算法则教案篇3

教学目标

1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.

2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.

3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.

教学重点,难点

重点是对数的运算法则及推导和应用

难点是法则的探究与证明.

教学方法

引导发现法

教学用具

投影仪

教学过程

一。引入新课

我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.

如果看到这个式子会有何联想?

由学生回答(1)(2)(3)(4).

也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.

二.对数的运算法则(板书)

对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.

由学生回答后教师可用投影仪打出让学生看:,.

然后直接提出课题:若是否成立?

由学生讨论并举出实例说明其不成立(如可以举而),教师在肯定结论的正确性的同时再提出

可提示学生利用刚才的反例,把5改写成应为,而32=2,还可以让学生再找几个例子,.之后让学生大胆说出发现有什么规律?

由学生回答应有成立.

现在它只是一个猜想,要保证其对任意都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?

学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.

证明:设则,由指数运算法则

即.(板书)

法则出来以后,要求学生能从以下几方面去认识:

(1)公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).

(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.

(3)若真数是三个正数,结果会怎样?很容易可得.

(条件同前)

(4)能否利用法则完成下面的运算:

例1:计算

(1)(2)(3)

由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:

可由学生说出.得到大家认可后,再让学生完成证明.

证明:设则,由指数运算法则得

教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?

有的学生可能会提出把看成再用法则,但无法解决计算问题,再引导学生如何回避的问题.经思考可以得到如下证法

.或证明如下

,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)

请学生完成下面的计算

(1)(2).

计算后再提出刚才没有解决的问题即并将其一般化改为学生在说出结论的同时就可给出证明如下:

设则,.教师还可让学生思考是否还有其它证明方法,可在课下研究.

将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则

(1)了解法则的由来.(怎么证)

(2)掌握法则的内容.(用符号语言和文字语言叙述)

(3)法则使用的条件.(使每一个对数都有意义)

(4)法则的功能.(要求能正反使用)

三.巩固练习

例2.计算

(1)(2)(3)

(4)(5)(6)

解答略

对学生的解答进行点评.

例3.已知,用的式子表示

(1)(2)(3).

运算法则教案篇4

一、内容及其解析

(一)内容:对数运算性质的应用。

(二)解析:本节课是于对数运算性质的一节后延课,是高中新课改人教a版材第二章的第二节的第三节课.在此之前,学生已经学习过了对数的概念、指数与对数之间的关系,并且利用指数与对数的关系推导出了对数的运算性质,对数的换底公式就是在此基础上展开讨论的。本节课的重点是对数的换底公式;难点是换底公式的证明及应用。从指数与对数的关系出发,证明对数换底公式,有多种途径,在中要让学生去探究,对学生的正确证法要给予肯定;证明得到对数的换底公式以后,要引导学生利用换底公式得到一些常见的结果,并处理一些求值转化的问题。

二、目标及其解析

(一)教学目标

1.掌握并能够证明对数的换底公式;

2.正确应用换底公式得到其变形结果,能利用它将对数转化为自然对数或常用对数来计算,体会转化与化归的数学思想;

3.通过本节课换底公式的证明及前一节课对数运算法则的推导过程,培养学生应用已有知识发现问题及解决问题的能力,体会数学内在的逻辑性,发现数学美,提高学生学习数学的热情。

(二)解析

1.掌握并能够证明对数的换底公式指的是:熟记换底公式,能够证明换底公式;

2.正确应用换底公式得到其变形结果指的是:能利用换底公式得到一些常见结论(即换底公式的变形公式),对于具体的求值问题,能够选择适当的底数进行转化,从而简化计算;

3.对数的运算性质及换底公式的推导和证明,可以有不同的顺序,各条性质之间有些也能互相推导,也可以转化为定义推导,对于具体的求值问题,可以应用不同的性质来解决,非常灵活,但不困难,题目做起来非常有趣;通过这部分内容,培养学生的数学能力,感受数学学科的特点,激发学生学习数学的兴趣。

三、问题诊断分析

本节课容易出现的问题是:针对具体问题学生不能选择适当的底数来应用换底公式。出现这一问题的原因是:学生对换底公式尚不太熟悉,转化的能力也有待提高。要解决这一问题,教师要通过对换底公式的变形公式的探究及具体的例子,让学生自主探究,必要时给予适当引导,让学生学会分析问题,逐步掌握换底公式的应用。

四、教学过程设计

(一)情景导入、展示目标

1.对数的运算性质:如果a>0,a?1,m>0,n>0,那么

(1)

(2);

(3).

2.换底公式

其中

两个重要公式:,

(二)合作探究、精讲点拨

例1.(1).把下列各题的指数式写成对数式

(1)=16(2)=1

解:(1)2=16(2)0=1

(2).把下列各题的对数式写成指数式

(1)x=27(2)x=7

解:(1)=27(2)=7

点评:本题主要考察的是指数式与对数式的互化.

例2计算:⑴,⑵,⑶,⑷

解析:利用对数的性质解.

解法一:⑴设则,∴

⑵设则,∴

⑶令=,

⑷令∴

解法二:

点评:让学生熟练掌握对数的运算性质及计算方法.

例3.利用换底公式计算

(1)log25?log53?log32(2)

解析:利用换底公式计算

点评:熟悉换底公式.

五.课堂目标检测

1.指数式化成对数式或对数式化成指数式

(1)=2(2)=0.5(3)x=3

2.试求:的值

3.设、、为正数,且,求证:.

六.小结

本节主要复习了对数的概念、运算性质,要熟练的进行指对互化并进行化简.

运算法则教案篇5

?学情分析】:

上一节课已经学习了用导数定义这种方法计算这五个常见函数的导数,而且已经初步接触了导数加减运算法则.本节将继续介绍导数乘除运算法则.

?教学目标】:

(1)能用基本初等函数的导数公式和导数加减运算法则求简单函数的导数.

(2) 会用导数乘除运算法则求简单函数的导数.

(3)加强学生对运算法则的理解与掌握,学会归纳与概括.

?教学重点】:

两个乃至多个函数四则运算的求导法则,复合函数的求导法则等,都是由导数的定义导出的,要掌握这些法则,须在理解的基础上熟记基本导数公式,从而会求简单初等函数的导数.

?教学难点】:

合理应用四则运算的求导法则简化函数的求导过程.

?教学过程设计】:

教学环节

教学活动

设计意图

一、复习引入

函数

导数

五种常见函数、、、、的导数公式及应用

为课题引入作铺垫.

二.新课讲授

(一)基本初等函数的导数公式表

函数

导数

(二)导数的运算法则

导数运算法则

1.

2.

3.

(2)推论:

(常数与函数的'积的导数,等于常数乘函数的导数)

淡化证明,直接给出公式.

三.典例分析

例1.假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?

解:根据基本初等函数导数公式表,有

所以(元/年)

因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.

(1)

(2)y =;

(3)y =x · sin x · ln x;

(4)y =;

(5)y =.

(6)y =(2 x2-5 x +1)ex

(7) y =

?点评】

① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.

例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为

求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)

解:净化费用的瞬时变化率就是净化费用函数的导数.

(1)因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.

(2)因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.

函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.

及时运用新知识,巩固练习,让学生体验成功,为了使学生实现从掌握知识到运用知识的转化

四、概括梳理,形成系统

(小结)

1.基本初等函数的导数公式表

2.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题.

练习与测试:

1.求下列函数的导数:(1) (2) (3) y = tanx (4)

2.求函数的导数.

(1)y=2x3+3x2-5x+4 (2)y=sinx-x+1 (3)y=(3x2+1)(2-x) (4)y=(1+x2)cosx

3.填空:

(1)[(3x2+1)(4x2-3)]′=( )(4x2-3)+(3x2+1)( )

(2)(x3sinx)′=( )x2sinx+x3( )

4.判断下列求导是否正确,如果不正确,加以改正.

[(3+x2)(2-x3)]′=2x(2-x3)+3x2·(3+x2)

5.y=3x2+xcosx,求导数y′.

6.y=5x10sinx-2cosx-9,求y′.

参考答案:

1.(1)y′′;

(2)y′′;

(3)y′= (tanx)′=()′;

(4)y′′=.

2.(1)(2x3+3x2-5x+4)′=(2x3)′+(3x2)′-(5x)′+4′=2·3x2+3·2x-5=6x2+6x-5

(2)y′=(sinx-x+1)′=(sinx)′-x′+1′=cosx-1

(3)y′=[(3x2+1)(2-x)]′=(3x2+1)′(2-x)+(3x2+1)(2-x)′

=3·2x(2-x)+(3x2+1)(-1)=-9x2+12x-1

(4)y′=[(1+x2)cosx]′=(1+x2)′cosx+(1+x2)(cosx)′

=2xcosx+(1+x2)(-sinx)=2xcosx-(1+x2)sinx

3.(1)[(3x2+1)(4x2-3)]′=(3x2+1)′(4x2-3)+(3x2+1)(4x2-3)′

=3·2x(4x2-3)+(3x2+1)(4·2x)=(6x)(4x2-3)+(3x2+1)(8x)

(2) (x3sinx)′=(x3)′sinx+x3(sinx)′=(3)x2sinx+x2(cosx)

4.不正确.[(3+x)2(2-x3)]′=(3+x2)′(2-x3)+(3+x2)(2-x3)′

=2x(2-x3)+(3+x2)(-3x2)=2x(2-x3)-3x2(3+x2)

5.y′=(3x2+xcosx)′=(3x2)′+(xcosx)′

=3·2x+x′cosx+x(cosx)′=6x+cosx+xsinx

6.y′=(5x10sinx-2cosx-9)′=(5x10sinx)′-(2cosx)′-9′

=5·10x9sinx+5x10cosx-(·cosx-2sinx)

=50x9sinx+5x10cosx-cosx+2sinx

=(50x9+2)sinx+(5x10-)cosx

运算法则教案5篇相关文章:

中班教案过马路教案5篇

认识伞教案中班教案模板5篇

数字教案中班1到10教案5篇

观潮教案设计优秀教案推荐5篇

中班教案数学教案精选5篇

海上日出教案优秀教案5篇

小班教案不乱扔垃圾教案5篇

蒙式教案音乐小蚂蚁教案5篇

幼儿园教案大班社会教案最新5篇

幼儿园教案大班社会教案推荐5篇

运算法则教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
84385