关注学生反馈并据此优化内容,是教案持续改进的有效方法,,教案设计时,各个环节的紧密衔接能够帮助学生更好地理解知识,以下是69模板网小编精心为您推荐的两位数乘两位数的教案6篇,供大家参考。
两位数乘两位数的教案篇1
教学内容:
义务课程标准数学(人教版)三年级上册p15-17例1以及练习四
教学目标:
1、理解两位数连续进位加法的算理,探索并掌握两位数连续进位加法的计算方法,并能正确计算。
2、能结合具体的情境,提高提出问题、解决问题的能力。
3、对学生进行爱护野生动物的。
教学重点:
理解“哪一位相加满十,就向前一位进1”的算理。
教学难点:
结合情境,提出问题、解决问题。
教学过程:
一、准备练习
1、口算练习
2、两位数加两位数竖式计算,并说出算法
二、情境创设
1、出示教材图片
2、介绍一些野生动物,随即进行爱护野生动物
3、活动设计
活动1——探索算法
出示第15页统计图提问:你能从中发现什么?
自己独立思考
学习小组讨论
集体交流
注意引导学生说己的思路,着重突破“十位满十”的`问题,让学生理解“哪一位满十,就向前一位进1”的算理。
活动2——巩固算法
出示练习四第3题的图
问:你从图中获得了哪些信息?
你能提出哪些数学问题?
你如何解决这些问题?
小组交流,说出算法
三、教学效果测评
1、做一做1、2题
2、练习四1、2题
两位数乘两位数的教案篇2
教学内容
教材第33、34页,三位数乘两位数的口算。
教学提示
本部分的教学是口算乘法,包括:整百数乘整十数、几百几十的数乘整十数。这些内容是义务阶段有关整数口算乘法的教学目标,它是作为小学生应该具备的口算乘法技能的基本要求。教学时,要注意为学生创设问题情境,使学生能自主学习,掌握整数乘法的一般口算方法。
教学目标
理解整百数乘整十数和几百几十的数乘整十数的口算算理;掌握合理的口算方法。能正确进行口算,培养思维的灵活性,促进思维条理化。
过程与方法
经历过口算步骤的推导,初步培养学生的类推能力;结合形式多样的练习,培养学生学习数学的兴趣,积淀数学意识。
情感、态度与价值观
人人参与口算,是学生养成积极动脑、认真口算的良好学习习惯。
教学重点、难点
教学重点:理解整百数乘整十数和几百几十的数乘整十数的口算方法。。
教学难点:掌握合理的口算思考过程,正确进行口算。
教学准备
教师准备:多媒体
学生准备:课前小研究,学习用品
教学过程
(一)新课导入:
1.复习回顾,谈话导入
10个十是( ) 10个一百是( ) 12个一百是( ) 50个十是( ) 500个十是( ) 420个十是( )
20×5 30×6 4×70 100×6 3×200 500×3 200×6 12×4
学生开火车,直接说出得数。教师随机选两题,说一说口算方法。
设计意图:通过复习整百数乘一位数的乘法口算,帮助学生回忆口算的方法,为新课的学习做好铺垫。
2.创设情景,导入新课,出示信息窗,找出数学信息。
出示情境图信息窗一,让学生欣赏图片,搜集数学信息
谈话:请大家仔细欣赏图片,并要认真阅读下面的'文字,看你从图中能得到哪些信息?谁能发表你的看法?
学生交流自己的想法。
根据信息提出问题。
谈话:根据我们得到的这些数学信息,你能提出什么数学问题?
学生提出问题,教师把本节课要重点解决的问题板书在黑板上。
提出学习目标:同学们提的问题还真多,我们本节课重点研究这几个问题,以完成这样的学习目标。
(1)整百数或整百整十数乘整十数的口算方法。 (2)养成认真计算的良好学习习惯。 设计意图:使学生在熟悉的情境中,激发探究的欲望,为后面的学习做准备。
(二)探究新知:
自主探究,学习新知
根据数学信息,提出数学问题
根据你找到的数学信息,你想提出哪些数学问题?
探索整百数乘整十数的口算方法
(1)一组共发放了多少份宣传资料? 指名学生列式:400×20(板书) 得数是多少呢?
(2)把你的算法在小组里互相说一说 指名小组代表交流 预设1:根据4×2=8,推算400×20=8000
预设2:根据400×2=800,再算800×10=8000 预设3:先算4×20=80,再算80×100=8000
(3)比较异同,优化算法
其实这几种算法都是转化为我们学习过的算式进行计算。几种算法中你最喜欢哪种算法?
交流讨论,让学生发现两个因数末尾0的个数与积末尾0的个数的关系,通过对比,让学生体会到确实用添0的方法来计算这些题最简便,那添0法到底是怎么样的?让学生分小组去归纳:只要先把0前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾加上几个0。
(4)即时练习:自主练习第一题,算一算,比一比,体会算法。
探索几百几十乘整十数的口算。
(1)教材34页红点问题:二组一共发放了多少份宣传资料?
指名列式:210×30(板书)
又该怎样计算呢?
(2)把你的算法在小组里互相说一说。 指名小组代表交流。 预设1、先算21×3=63,再推算210×30=6300 预设2、先算210×3=630,再推算630×10=6300
(3)优化算法:先把0前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾加上几个0。
设计意图:使学生掌握整数乘法口算的方法,体验解决问题策略的多样性。同时在对比中归纳出简便算法。
(4)即时练习:自主练习第三题
(三)巩固新知:
自主练习1和3,直接写得数。
让学生独立完成,然后讲一讲,集体订正。重点让学生说算法:怎样算?
自主练习2,解决问题。
学生说思路及解决问题的方法。
设计意图:让学生经历从不同的角度思考可以解决问题,培养学生的发散思维,巩固本节课所学的知识。
(四)达标反馈
1.口算,我最棒!
400×30= 90×600=
50×200= 30×300=
250×40= 490×20=
160×50= 70×130=
2.
有30行苹果树,每行400棵,一共有多少棵苹果树?
两位数乘两位数的教案篇3
教学目标:
1.知识与技能:使学生掌握“总价=单价×数量”“路程=速度×时间”等常见数量关系,使学生经历探索三位数乘两位数笔算方法的过程,理解三位数乘两位数的算理,掌握三位数乘两位数的基本的笔算方法,能正确进行计算。
2.过程与方法:使学生在探索计算方法的过程中体会新旧知识间的联系,并能将三位数乘两位数的一般方法迁移到多位数的乘法运算中去。
3.情感态度与价值观:激发学生计算的兴趣,培养学生良好的计算习惯,不断提高学生的计算正确率。
教学重点:三位数乘两位数的笔算
教学难点:三位数乘两位数列竖式计算
教学准备:小黑板,练习题卡片
教学过程:
一、导入新课,自学指导
1.出示情境图:月星小区,多层楼每幢住48户,小高层楼每幢住128户,高层楼每幢住236户。
提问:从图中你能获取哪些信息?可以提出哪些问题?怎么列式?
出示表格:
5幢高层楼共可住( )户
16幢多层楼共可住( )户
16幢小高层楼共可住( )户
根据学生的回答,板书三道算式。
(1)请学生列出算式,并比较三个算式的相同之处(都要用每幢楼住的户数乘幢数,算出一共能住的户数)
(2)学生用竖式计算236×5和48×16。
(3)讲评:谁来说一下这个三位数乘一位数的计算过程?第2题是两位数乘两位数,谁来说一下它的计算过程?48乘1,所得的8为什么写在十位上?
2.揭示课题:
月星小区有16幢楼,平均每幢住128户。月星小区一共住了多少户?
提问:从图中你能获取哪些信息?可以提出哪些问题?怎么列式?
128×16和刚才的.两道题相比,有什么不一样呢?今天我们就一起来研究“三位数乘两位数的乘法”
二、自主学习,合作探究
教学例1 学生尝试。做在练习本上。
启发128×16的得数是多少呢,你能尝试用竖式计算出得数吗?自己在下面试一试,如果有困难,可以和小组里的同学一起研究。
(1)指名板演,展示学生做的,让板演学生说一下这个三位数乘一位数的计算过程。提问:你们和他做的一样吗?
(2)你是怎样一步一步地来算这道题的? 128乘16的积应该从哪位写起?我们把这两部分怎样?得数的末尾应该和哪一位对齐?(指算式)这个128实际上代表的是多少?求的是多少幢楼的住户数?算出的20xx其实是几幢楼的住户数?(根据学生回答完成黑板竖式板书)
(3)我们一起来答一下。
(4)刚才是这么算的请举手?
(5)三位数乘两位数的乘法,老师还没有教,你们是怎么会做的?(引导学生说清计算方法)教师再给你们两道题,会做吗?
三、反馈展示,质疑释疑
以竖式呈现的四道题:213×32,375×24,309×26,和248×45
(1)学生独立练习,指名四人写在教者准备的纸上。并注意巡视,以发现学生解题中的问题,并有意进行收集。
(2)集体评析。先引导学生看过程,同意吗?这个结果比较大,怎么读?再出示一份错误作业,他错在哪儿了?提醒学生计算时要小心。
(3)总结计算法则。三位数乘两位数的乘法,我们都是分几步做的?第一步做什么?所得的结果的末位怎样?接着说下去。
四、精讲提升,拓展延伸
1.做练习五第1题
让学生在书中直接写出得数,指名核对得数,了解全对人数。
2.做练习五第2题
先判断每道题的计算过程和结果是否正确,再说说错在哪里,怎样改正。提问:计算三位数乘两两位数要注意什么?
五、达标检测,反馈巩固
做练习五第4题
学生独立填表,并组织反馈,说明数量关系式,怎样列竖式。
指出:两位数乘三位数的试题,在列竖式计算时,交互两个乘数的位置后再乘比较简便。
布置作业
教学反思
板书设计
三位数乘两位数的笔算
236 48 128
× 5 ×16 ×16
比较前两个式子和第三个的联系:
区别:
两位数乘两位数的教案篇4
教学目标:
1、学生经历探索两位数乘两位数的计算方法的过程,初步掌握笔算方法,理解算理与方法。
2、学生通过自主探索、合作交流,体验计算方法的多样化,并在相互比较中,自主掌握优化的方法。
3、在探索算法与解决问题过程中,感受“借助旧知识,解决新问题”的策略意识,体验成功的喜悦,体会数学在生活中的应用价值。
教学重点:在理解算理基础上掌握两位数乘两位数的笔算方法。
教学难点:理解乘的顺序以及第二部分积的书写方法
教学准备:课件
教学过程:
环节一:情境引入
1、师生谈话:
老师准备买一些新书,在购书的过程中也隐含着很多的数学问题。
2、引出新知:(课件出示:一本书23元)
师:你想到了什么数学问题?生提问。
老师如果买2本书要多少钱?买10本书呢?
算式怎么列?会计算吗?
这些算式同学们以前学过,是”旧”知识了.(板书旧)
3、师提问题:如果要买12本这样的书,要多少元呢?(列式:23×12)
这是一个两位数乘两位数的算式.(板书课题)
环节二:算法探究
1、估算:
估一估,23×12大约是多少?比如
a: 23估成20,12估成10,20×10=200。
b: 23估成20,20×12=240。
c: 12估成10,23×10=230。
……
过渡:到底等于几?以前学过吗?这是个”新”问题(板书新),该怎么办啊?能不能把新问题转化成旧知识来解决呢?
2、自主探索:
学生独立在练习纸上计算23×12,教师进行巡视指导部分学困生。
3、小组交流(学生组内交流)
4、全班汇报:
预计学生可能会出现下列当中的几类方法:
(1)23+23+…+23=276(12个23相加)
(2)23×2×6=276
(3)23×10+23×2=276
(4)竖式
教学调控:每出现一种方法,应该让学生讲明算理与方法,并让下面的学生提出不明白的问题。(让学生借助图来说说算式的意思)
5、优化口算的方法
同学们真了不起。通过把12拆成两个数相加,或拆成两个数相乘。使这个新问题,变成了我们学过的知识来解决。
⑴你觉得把12怎么拆最简便呢?
⑵如果现在买13本,23×13你打算怎么算?
⑶探讨:为什么不用连乘法?
⑷教师指出:看来在计算时,连乘有局限性。拆成整十数和一位数不仅适用范围广,而且好算。
6、研究笔算
⑴(生出现列竖式)刚才还有同学列竖式计算,勇敢的进行了尝试.现在谁愿意把你的竖式展示给大家看看.(直接反馈)
(生没出现)师:我们以前学习两位数乘一位数的.时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)
⑵学生尝试列竖式。
⑶(投影机)反馈,全班交流(学生可能出现以下几种)
2 3
× 1 2
276
2 3 2 3 4 6
×2 × 1 0 +2 3 0
4 6 2 3 0 2 7 6
2 3
× 1 2
4 6…………2*23
2 3 0…………10*23
2 7 6 …………46+230
2 3
×1 2
4 6
2 3
2 7 6
请列竖式的学生说说自己是怎么算的。请学生对他的算法提出不明白的问题?
主要围绕以下几个问题:
①46是怎么来的?230呢?276?(根据学生回答,写出)
(同学们观察一下,有没有发现什么?)(原来口算和笔算是相通的,只不过表达的形式不同而已)
②0是否可以省略?
③省略后23是否需要往后移?为什么3必须写在十位。
⑷师黑板板书完整算法。(好,我们现在一起来算一算)
师边写边问:我要先算什么?再算什么?要注意什么?最后算什么?
⑸(同桌交流)竖式中每一步的意思。
6、刚才我们通过拆数变成旧知识来算,现在又学会了列竖式.方法可真多呀!
口算我们已经学过了。这节课我们要重点掌握列竖式来笔算两位数乘两位数。(完整板书)
7、你能接着算吗?
问:两个36,意思一样吗?
8、选择练习:
你能列竖式吗?选一道算一算
出示:21×14= 25×11=
34×21= 14×21=
同桌互相检查,出现错误汇报。集体纠正
你有什么发现?(交换两个因数的位置,积不变,我们可以用这种方法来进行乘法验算。
10、总结梳理
这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)
师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。
现在你能说说应该怎样笔算两位数乘两位数吗?
现在我们就用今天的知识,去解决实际问题。
环节三:实践应用
有42个小朋友去游乐场。如果每个人都想玩这两个游乐项目,那么请你帮他们算一算,每个项目的费用是多少?
游乐项目 价格
碰碰车 12元/车 每车限坐2人
丛林探险 14元/船 每船限坐4人
拓展题:
12×11= 13×11= 14×11=
算一算,你有没有发现什么规律。
两位数乘两位数的教案篇5
教学内容:
教材第5、6页,想想做做第5~10题
教学目标:
同过练习,使学生进一步掌握、规范末尾有0和中间有0的三位数乘两位数的简便笔算方法。
探索乘数、积的变化规律,进一步明白末尾有0乘法的口算依据。
教学重点:
末尾有0的三位数乘两位数的笔算
教学过程:
一、举例昨天学生作业中的几种典型错误:(竖式略)
1、34560 结合竖式提问:列竖式的时候要注意0的位置,乘的时候第一步算6乘34,积的末尾对齐6,第二步算5乘34,积的末尾要对齐5。
如果是三位数乘三位数(在原式前依次加上一位)谁能说说分几步算?每一次的积怎么写?
小结:乘到哪一位,积的末尾对齐那一位。
2、50034 竖式写的时候没有把2个0都写在后面,老师在批改作业的时候画了一条曲线,可以问:书上是怎么画线的?这题有什么问题?应该怎么改?
3、填空说理:两个乘数的末尾一共有2个0,积的末尾( )个0,为什么?
二、完成书上的练习
1、做第5题
学生独立填写得数。填完后问:把后面四栏同第一栏比较,分别看看乘数有什么变化,积有什么变化?
(估计学生都会说多0、少0之类的。)规范学生的说法:220,2乘10等于20,乘10可以说成是扩大10倍,学生模仿说一说。
把第一栏和第二栏的比较:一个乘数没变,另一个乘数扩大10倍,积也扩大10倍。
类似的变化还有吗?(比如说第4栏)也指名学生说一说。
再让学生比一比第2栏和第4栏,你有什么发现?(一个乘数扩大10倍,另一个乘数缩小10倍,积不变。)
2、算一算,比一比
先请学生观察题组,说说它们之间有什么联系?
再独立完成这些题,做完后交流得数。
3、完成口算第7题,老师看好时间,从时间角度了解学生的完成情况。
做完后,全班校对得数。
4、完成第10题:你能在□里填合适的.数字,使等式成立吗?
□□□□=1600 □□□□=2400
指名说说你在做题时先怎么想?结果是多少?还有别的结果吗?
如果没规定是两位数乘两位数,你还会有别的结果吗?
这么多种结果,它们之间有什么共同的地方呢?
5、讨论第9题
(1)先读题,问:这里一共给了几个信息?
再读问题,问:这个问题和什么有关?哪些信息暂时还用不上?
指出:当信息比较多的时候,我们要正确选择能解决问题的信息。
学生列式解答。
(2)你还能提出什么问题?
一般学生还会提这些废纸能节约多少?
问:这些废纸指的是哪些废纸?
学生解答自己提出的问题,再交流。
三、布置作业
p.6第8题
两位数乘两位数的教案篇6
一、复习引入,揭示课题
1.出示一幅订牛奶的情景图。(一份牛奶每月28元,订5个月要花多少钱?)
指导学生从图中获知数学信息及所求问题,提问:你打算怎样列式解答呢?解决这个问题需要用到以前学习的什么知识呢?(285;前面学过的两位数乘一位数笔算的知识)
教师请一位同学在黑板上写出笔算过程,同时请其他同学口算:1320;1240;3021;lol5;2810。师:这些都是前面刚学过的乘法口算,说说你的口算过程。(两位数乘整十数的口算)
引导学生一起检查黑板上写出的285的笔算过程。提问:通过285的笔算,我们可以求得订5个月牛奶要花的钱。刚才口算2810可以解决这里怎样的问题呢?(订10个月牛奶要花的钱)
出示:订一年这样的牛奶要花多少钱?根据学生回答,教师板书:2812。再提问:与前面学过的两位数乘一位数、两位数乘整十数相比,这是一道怎样的算式呢?(两位数乘两位数)
教师板书课题,并明确今天的学习内容。
[设计意图:通过具体的生活情境揭示数学信息与问题,巧妙地将相关旧知识与要探究的新问题串连在一起,让学生在得到有效复习与铺垫的同时,又能体会到解决实际问题由易到难渐进发展的过程,从而激发学生不断探求新知的学习热情。]
二、展开探索,算法多样
1.估算2812的积大约是多少呢?(把28看作30,12看作10,2812的积大约是300)
2启发谈话:28x12的精确答案是多少呢?这是个新的问题,小朋友,开动脑筋能否用以前学过的知识得出2812的结果呢?请试着在纸上算一算!如果独立计算有困难,可以先自学课本30页中的算法,再独立进行计算。
3.学生在小组内展开交流,说说各自的计算方法。
4.全班集体分享,教师将其写在黑板上,并让学生分别说出思路。
[设计意图:尊重学生就要尊重他们的学习方式和思考结果,给他们充分独立探索的空间和交流展示的平台。]
三、深化研究,优化算法
1.回顾:我们还没有学习2812的计算方法,同学们就能用这么丰富的计算方法得出结果,真了不起!老师想知道,你们是借助以前学过的哪些知识来解决的呢?(第1种方法借助两位数乘一位数、两位数乘整十数以及笔算加法的知识;第2、3两种方法借鉴了两位数乘一位数的竖式计算;4、5两种方法都是运用的两位数乘一位数的知识。)
2.赏析:在这些算法中,你比较欣赏哪一种算法?(我喜欢第一种方法,因为它容易理解;我喜欢竖式计算,因为它比较清楚简捷;我认为四、五两种方法不仅容易理解,而且只用两步就可以算得最后的结果)
3.讨论:如果要计算2913你会选择怎样的计算方法呢?(同桌讨论,全班交流)提问:为什么没有同学选择像黑板上(4)、(5)两种方法来计算呢?(4)、(5)两种方法有局限性,乘数13不能像1那样拆。
4.比较:方法(2)、(3)都是用的竖式计算,你发现它们有什么异同呢?(这两个竖式只是十位上的1去乘28,所得的积写法不同,其它都一样)提问:你是怎样理解这两种不同写法的呢?(方法(2)与以前学习的笔算一样,用乘法口诀一八得八、一二得二记录每步乘得的积;方法(3)乘数12十位上的1表示10,2810口算得280)思考:在方法(2)中,乘数十位上的1乘得的积28与第一次乘得的积56相比,写的位置靠前一位了,你是怎样理解的呢?(这里的28表示28个十)试想:如果乘数十位不是1,而是数字较大的9时,你觉得运用哪种写法比较好呢?(口算的方法有些困难,运用乘法口诀记录每步乘积比较容易)
观察方法(1)、(2)之间的联系,教师根据学生的口答进行连线。
5、小结:方法(2)是将方法(1)分步计算的过程用竖式的形式表示出来,当我们理解之后,采用方法(2)的写法不仅使计算过程清晰,而且还便于检查。所以小学阶段我们进行笔算的基本算法是竖式计算,随着学习的不断深入,它的优势将会更明显。(完善课题,添上笔算)同桌小朋友相互说一说怎样用竖式计算2812,在计算过程中要注意些什么?(用乘数十位上的数去乘,乘得的'积的末尾要和十位对齐)
6.练习:出示课本第31页想想做做第一题,学生独立练习后,全班进行交流。
[设计意图:由算法多样化到算法优化是通过比较选优的渐进过程,教学中教师将两位数乘两位数探究的实例进行扩展,在2812与2913的对比中,寻求两位数乘两位数的一般方法;在2812与2892的对比中,得出简捷的笔算写法;在(1)、(2)两种方法的联系中,进一步明晰两位数乘两位数笔算的算理。]
四、发现规律,学会检验
1.教师在黑板上出示1228的竖式,与刚才2812的竖式比较异同。(都是两位数乘两位数,只是乘数的位置交换了)提问:它们的计算结果会怎样呢?学生带着猜想补充完整课本31页试一试的计算并观察验证。启发:运用这一规律可以对两位数乘两位数进行验算。
2.课本想想做做第二题。
[设计意图:对两位数乘两位数笔算进行验算是本节课教学的另一任务,通过观察、猜想、验证、思考等教学环节,让学生主动接受这一检验方法,获得提高计算正确率的保障。不仅能够培养学生检查的学习习惯,更能锻炼他们良好的学习品质。]
五、熟练运用,拓展提高
1.完成课本想想做做第三题,学生纠错后在全班集体交流。
2.学生独立完成课本想想做做第四题,教师巡视指导。
3.完成课本想想做做第五题。启发谈话:学以致用不仅能巩固我们学习的知识,还能提高我们运用知识解决问题的能力。看到了这样的生活情景你能提出什么问题?学生利用今天学习的知识进行解答。
4.提问:你能利用今天学习的知识,计算语文课本上你喜欢的一篇课文大概的字数吗?(数一数课文每行有多少字,大约有多少行,利用今天学习的两位数乘两位数的知识算一算就可以知道了)学生试着练习。
[设计意图:学生对新知的掌握需要进行多种形式的练习,在学生独立笔算中,教师能发现问题进行针对性的指导,在错例的纠正中强化运用新知注意的要点,在解决实际问题的应用中,拓展了学生的视野,进一步调动学生的学习热情。]
六、交流体会,分享收获
启发谈话:通过这节课的学习,相信你有很多学习的体会和收获,与同学们一起分享吧!
[设计意图:通过交流分享,不仅有利于对今天学习的新知进行归整,还能让学生找到学习的成就感,使学习成为一件快乐的事。]
两位数乘两位数的教案6篇相关文章:
★ 四季教案6篇
★ 中班教案范文6篇
★ 识字活动教案6篇
★ 语言儿歌教案6篇
★ 整理教案推荐6篇
★ 古诗教案6篇
★ 望岳的教案6篇
★ 荷塘月色教案6篇