在教案中设置互动环节,可以有效提高学生的参与度和积极性,一份高质量的教案展现了教师的认真态度与责任感,下面是69模板网小编为您分享的除法教案精选5篇,感谢您的参阅。
除法教案篇1
教学内容:
分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。
教学目标:
使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。
教学重点:
分数除以整数的计算方法 。
教学难点:
除转化为乘和道理。
教学过程:
一、 复习
1.口答下面各题的倒数。
2 、1、0.4
2.根据一个乘法算式写出两个除法算式。
3×15=45 125×8=1000
二、 新授
揭示课题:分数除法
1.分数除法的意义和计算法则
(1) 出示25页的月饼图。
(2) 引导学生回答问题
1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?
板书:×4=2 (块)
2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?
板书:2÷4=(块)
3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?
板书:2÷=4(人)
(3) 让学生观察比较(板书的)3个式子的已知数和得数。
明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。
第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。
小结:分数除法的意义。
强调:分数除法的意义和整数除法的意义相同。
(4) 练习:教科书第25页"做一做。
2.分数除以整数的计算方法。
(1)出示例子:把米铁丝平均分成2段,每段长多少米?
(2)启发学生分析数量关系。(画线段图表示)
米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。
板书 解法1:÷2==(米)
使学生明白。
1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。
2)这种计算方法有限制条件的,分子必须能被整数整除。
还有其它的解法吗?
引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。
板书 解法2:÷2=×=(米)
(3) 小结:分数除以整数的计算方法。
板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。
强调。
1)被除数不变;
2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;
3)0不能做除数,0没有倒数;
4)这种计算方法在一般情况下都可以进行,应用普遍。
5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。
三、 巩固练习
练习七第1、3题。
四、 作业
练习七第2、4、5、6题
五、 课外思考
练习七第7题。
除法教案篇2
教学目标:
1、使学生在理解算理的基础上,进一步掌握一位数除两位数(商是两位数)的除法的计算方法。
2、使学生明确每次除后必须比除数小。
3、培养学生观察、分析和概括的能力。
教学重点:
掌握一位数除两位数(商是两位数)的笔算方法。
教学难点:
掌握一位数除两位数(商是两位数)的笔算过程中的试商方法。
教学准备:
多媒体课件、口算卡片、小棒。
教学过程:
一、学前准备
1、口算。
555
497
2406
484
455
2807
2、板演。
说一说,笔算一位数除两位数的除法,应先算什么,再算什么。
3、导入新课。
二、探究新知
1、学习教材第16页例2.
(1)动手分一分,每分钟有几捆。
(2)尝试解答。
(3)质疑。当第一步502除完后,你发现了什么问题?(十位上的数不能被2除尽)
(4)说一说,在竖式中怎样计算。
(5)图式结合。
(6)学生第二次试商,边做边说计算过程,强调最大能商几个十。
2、比较例1与例2的异同点。
相同点:都是从被除数十位上的数除起,除到被除数的哪一位,商就写在那一位上面。
不同点:例2的被除数十位上还有余数,要与个位上的数合起来再除。
三、课堂作业新设计
1、教材第19页练习四的第1题中第二排的四道题。
(1)板书在黑板上。
(2)读题。
(3)独立完成,请四名同学板演。
(4)集体订正。
(5)教师把巡视中发现的典型错误加以分析、纠正。
2、病题门诊。
3、游戏。教材第16页做一做
四、思维训练
1、教材第19页练习四的第3题。
(1)出示题。
(2)理解题意。
(3)根据题意,你能提出哪些问题?
(4)尝试解答。
(5)交流解题思路。
2、教材第19页练习四的第4题。
(1)出示题。
(2)读题,分析数量关系。
(3)明确这是一道两问应用题,两个问题间存在着非常重要的联系。
(4)叙述解题思路。
(5)独立在本上完成。
(6)集体订正。
除法教案篇3
教学目标:
知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
能力目标:培养学生动手动脑能力,以及解决实际问题的能力。
情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:
解决实际问题。
教学难点:
用方程方法解答分数除法应用题
教学过程:
一、复习巩固,为新知作铺垫
课件出示:
1、写出下列各题的数量关系式,判断谁是单位“1”
(1)故事书的3/5是150本。
(2)书的'价钱是钢笔价钱的2/5。
(3)汽车速度是火车速度的1/2。
2、复习题:写出数量关系式,找出已知量和未知量。
操场上有27人参加活动,跳绳的是操场上参加活动总人数的2/9,跳绳的有多少人?
(1)谁是单位“1”;单位“1”是已知还是未知?
(2)写出等量关系式。
(3)找出题中的已知条件和未知条件
(4)根据题意列式。
学生独立完成,汇报反馈。
二、导入新课
看来同学们都能正确分析和解答分数乘法的实际问题,分数除法的实际问题怎么解答呢?这节课我们就来研究。
(一)学习新知
1、出示情景图:从情景图中你能获得哪些信息?
生简要回答
2、出示例题:
跳绳的有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?
3、讨论:(1)谁为单位“1”?是已知还是未知?
(2)根据那句话得到的信息?
(3)你能列出等量关系是吗?
半数:参加活动总人数2/9=跳绳的人数
(未知)(已知)
4、你们有什么办法利用以前的知识解答这道题?
同桌互相说说,在练习本上做一做。
生反馈,师板书。
学生口头检验对错。
5、对比复习题和例1,这两道题有什么相同点,不同点?
(二)巩固新知
看情景图,你还能提出问题吗?
(1)生提问题,全班解答。
(2)同桌互相提问题,写出等量关系式,列式解答。
(三)练习、巩固
打开书,29页,试一试1,自己独立完成。
集体订正
三、拓展延伸
回过头来看例题,你还能用其他的方法解答吗?
(用除法计算)
四、总结
这节课你有什么收获?
板书设计
除法教案篇4
教学目标:
1、学会利用7、8、9的乘法口诀进行求商的一般方法,能正确运用7、8、9的乘法口诀求商。
2、经历用7、8、9的乘法口诀求商的计算方法的形成过程,体验迁移类推、归纳概括的思想和方法。
3、让学生体验数学与生活的密切联系,形成良好的思维习惯。
教学重点:
掌握7、8、9的乘法口诀求商的方法。
教学难点:
能正确运用7、8、9的乘法口诀求商。
教学过程:
一、谈话引入,复习旧知
1、开火车,说结果。
36÷6= 25÷5= 24÷6 =
30÷6= 5÷5= 12÷3 =
16÷4=(大家一起说,并给予鼓励)
2、背诵7、8、9的乘法口诀引入课题。(抽生背7、8的'乘法口诀,大家一起背9的乘法口诀,并给予鼓励。)
二、创设情境,激发兴趣
1、师:同学们,六月有一个属于你们的节日,知道是什么节日吗?
生:“六一”儿童节。
师:恩,那在六一儿童节那一天,你们都会做些什么呢?(抽生说)
师:你们知道吗,二一班的小朋友已经在为六一儿童节做准备了,我们快来看看他们都在做些什么吧!(出示课件)
2、引导观察,收集信息
提问:图中的小朋友在干什么?通过观察,你能获得哪些数学信息?(指名回答,课件展示答案)
3、梳理信息,提出问题
师:根据这些数学信息,你想提出什么数学问题?
4、学生汇报
指名汇报问题,教师ppt展示“平均每行挂几面?”“每个小组分几颗?”“可以摆几行?”
三、合作交流,探索新知
1、探究56÷8的口算方法。(从图中点取出例1)
(1)老师读题,想一想,怎么解答列式?你能不能独立试着做做?(学生独立试算,并和同桌说说是怎么算的?)
(2)指名汇报(鼓励学生说出不同的方法)
(3)问:“用哪种方法最简便?(用乘法口诀求商)
引导学生小结:求56÷8的商,想()乘八得五十六,用乘法口诀想,就是()八五十六,因为七八五十六,所以56÷8的商是7。(教师板书)
2、口算56÷7
(1)师:现在,老师也想提出一个问题,我想把这56面小旗,挂成7行,平均每行挂几面?
怎么列式并解答呢?
(2)交流:说说你是怎么算出来的?
学生汇报:56÷7=8 因为七八五十六,所以56÷7的商是8(教师板书)
3、比较56÷8和56÷7两个算式的联系。
(让学生明白,这个时候用一句口诀可以解决两道除法算式)
4、完成图中另外两个数学问题。
(1)让学生独立列式,教师巡视。
(2)说说你是如何求出商的?(教师ppt展示答案)
四、活用数学,解决问题
1、基本练习。
(1)课件展示课本第38页”做一做“,让学生口算。
(2)抽生说答案,问:为什么做得这么准这么快?(每组用的是同一句口诀)
2、游戏:小猪吹泡泡
点名完成相应题目。
3、小兔过河。(第39页第3题)
(1)出示课件,先说一说如何解决这道题,并让学生用自己喜欢的方式帮助小兔子过河。
(2)集体订正,学生说出答案后,箭头指向相应的石头。
4、小鸟回家。
(1)出示课件,先说说如何帮助小鸟找到自己的家,然后发给学生小鸟身上的算式卡片,让学生贴到黑板上相对应的房子下面。
(2)让班上其他同学检查一下小鸟是否已经回到自己的家。
(3)还有哪些算式的结果分别是7、8、9。引导学生说出想口诀说算式。
五、全课总结,畅谈收获并总结。
通过今天的学习,你有什么收获?
(1)学生先自己想一想,然后和同桌之间互相交流。
(2)抽生说,教师总结。
这节课我们学会了用7、8、9的乘法口诀求商。
六、作业。
(1)口头作业:把乘法口诀背给自己的爸爸妈妈听,并让他们也考考你。
(2)书面作业:完成课本第40页3、4、5题。
除法教案篇5
教学内容:
新课标人教版四年级上册,p81,笔算除法(除数是整十数,商是一位数)。
教学目标
知识与技能:学生掌握除数是整十数除法方法,并能熟练进行计算。
过程与方法:使学生经历笔算除法计算的全过程,帮助学生理解算理。
情感、态度和价值观:培养学生养成认真计算的良好学习习惯。
教学重难点
定商,商的位置。
一、热身运动。
1、看着算式直接报出答案。
60÷20 120÷30 80÷20 360÷40
180÷30 240÷40 420÷60 240÷30
2、括号里能填几?
30×()<280 20×()<82 40×()<278
70×()<165 30×()<182 90×()<620
3、笔算87÷3和427÷6。
4、反馈。结合这两道题说说你是怎么算的。生说师适当板书除法法则。
5、揭题。笔算除法。
二、探究新知
1、出示图。说说你从图中了解到哪些数学信息?可以提出什么数学问题?怎样列式?
(1)板书:可以分给几个班?92÷30,口算,估算。
(2)学生尝试笔算。学生自练,师巡视收集学生的各种典型情况。并进行板书。
反馈。
①判断对错。你能告诉老师哪一个竖式是正确的?为什么?另外三个竖式错在哪里?为什么?
②结合小棒图理解算理。
③结合正确的竖式说说92÷30是怎么算的?提问:商为什么写在个位上?
④做一做。30÷10 40÷20 64÷30 85÷40。请四位同学上台板演。
(3)笔算192÷30。
学生列式笔算。
反馈。结合正确的竖式说说:你是怎么算的?商4,你是怎么想的?
(4)比较:在笔算192÷30和92÷30的过程中,有什么相同的地方,有什么不同的地方?
(5)做一做:140÷20 280÷50 565÷80请三生上板演。
2、小结
我们今天学习了什么知识?在笔算除数是两位数的除法时,要注意哪些方面?
三、练习
1、选择其中一组完成计算。
a 82÷30 102÷30 280÷70
b 78÷20 197÷80 364÷40
2、下面的计算对吗?把不对的改正过来。练习十四,第2题。
3、体育用品商店正在搞促销活动:
陈老师原来打算买12只足球,用这些钱现在可以买多少只足球?你还可以提出什么问题?
四、总结
这节课你有哪些收获?
教学设想:
1、计算教学之前还要不要“复习铺垫”呢?
建构主义学习理论认为,学习总是与一定的社会文化背景即“情境”相联系的,在实际情境下进行学习,有利于意义建构。的确,良好的问题情境能有效地激活学生的有关经验、体验。《标准》也非常强调,计算教学时“应通过解决实际问题进一步培养数感,增进学生对运算意义的理解”;“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程”;“避免将运算与应用割裂开来”。
然而,任何事物都不是绝对的。计算教学之前还要不要“复习铺垫”呢?其实,新课前的复习铺垫主要目的,一是为了通过再现或再认等方式激活学生头脑中已有的相关旧知,二是为新知学习分散难点。前者,只要有必要,则无可厚非。问题在于后者,有一些计算教学中,常常有人为了使教学“顺畅”,设计了一些过渡性、暗示性问题,甚至人为设置了一条狭隘的思维通道,使得学生无需探究或者稍加尝试,结论就出来了。这节课,它是在学生学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。用整十数除整十数、几百几十数的口算,是学习除数是两位数笔算除法的重要基础。为了激活学生头脑中已有的相关旧知,我觉得有必要在课前安排一个复习铺垫的环节。因此我在课前安排了3个小练习:1、看着算式直接报出答案;2、括号里能填几;3、笔算87÷3和427÷6。
2、要注重计算与日常生活的联系。
诚然,计算本身具有抽象性,但其反映的内容又是非常现实的,与人们的生活、生产有着十分密切的联系。新课程注重计算的现实意义,适当让学生在实际情境中通过活动体验、感受和理解运算的意义、来源、现实背景和本质。
?标准》注重了通过实际情境使学生体验、感受和理解运算的意义。在“总体目标”中提出:“经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”“经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。”
3、解决问题与技能形成。
过去计算教学中单调、机械的模仿和大量重复性的过度训练是要不得的,但是,在计算教学时只注重算理理解和解决实际问题,对计算技能形成的过程如蜻蜓点水一带而过,也是不利于培养学生的计算能力的。特别需要指出的是,在学生初步理解算理,明确算法后,不必马上去解决实际问题,因为这时正是计算技能形成的关键阶段,应该根据计算技能形成的规律,及时组织练习。具体地说,可以先针对重点、难点进行专项和对比练习,再根据学生的实际体验,适时缩减中间过程,进行归类和变式练习,最后让学生面对实际问题,掌握相应策略。
除法教案精选5篇相关文章: